Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Thompson, Ian

  • Google
  • 7
  • 15
  • 493

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2018Virtual Hull Monitoring: Continuous Fatigue Assessment Without Additional Instrumentation - Technical Note5citations
  • 2015Surface pre-conditioning with bioactive glass air-abrasion can enhance enamel white spot lesion remineralization46citations
  • 2014Enamel white spot lesions can remineralise using bio-active glass and polyacrylic acid-modified bio-active glass powders99citations
  • 2012Influence of air-abrasion executed with polyacrylic acid-Bioglass 45S5 on the bonding performance of a resin-modified glass ionomer cement45citations
  • 2011An in vitro evaluation of selective demineralised enamel removal using bio-active glass air abrasion25citations
  • 2011Minimally invasive caries removal using bio-active glass air-abrasion37citations
  • 2009Sintering and crystallisation of 45S5 Bioglass (R) powder236citations

Places of action

Chart of shared publication
Banerjee, Avijit
5 / 21 shared
Milly, Hussam
2 / 3 shared
Festy, Frederic
2 / 6 shared
Andiappan, Manoharan
1 / 1 shared
Watson, Timothy F.
5 / 17 shared
Sauro, Salvatore
1 / 16 shared
Toledano, Manuel
1 / 4 shared
Nucci, Cesare
1 / 2 shared
Paolinelis, George
1 / 2 shared
Pabari, Hiten
1 / 1 shared
Conradt, Reinhard
1 / 6 shared
Bretcanu, Oana
1 / 3 shared
Boccaccini, Aldo R.
1 / 77 shared
Paraskevopoulos, Konstantinos
1 / 1 shared
Chatzistavrou, Xanthippi
1 / 3 shared
Chart of publication period
2018
2015
2014
2012
2011
2009

Co-Authors (by relevance)

  • Banerjee, Avijit
  • Milly, Hussam
  • Festy, Frederic
  • Andiappan, Manoharan
  • Watson, Timothy F.
  • Sauro, Salvatore
  • Toledano, Manuel
  • Nucci, Cesare
  • Paolinelis, George
  • Pabari, Hiten
  • Conradt, Reinhard
  • Bretcanu, Oana
  • Boccaccini, Aldo R.
  • Paraskevopoulos, Konstantinos
  • Chatzistavrou, Xanthippi
OrganizationsLocationPeople

article

Surface pre-conditioning with bioactive glass air-abrasion can enhance enamel white spot lesion remineralization

  • Thompson, Ian
  • Banerjee, Avijit
  • Milly, Hussam
  • Festy, Frederic
  • Andiappan, Manoharan
  • Watson, Timothy F.
Abstract

OBJECTIVE: To evaluate the effect of pre-conditioning enamel white spot lesion (WSL) surfaces using bioactive glass (BAG) air-abrasion prior to remineralization therapy. METHODS: Ninety human enamel samples with artificial WSLs were assigned to three WSL surface pre-conditioning groups (n=30): (a) air-abrasion with BAG-polyacrylic acid (PAA-BAG) powder, (b) acid-etching using 37% phosphoric acid gel (positive control) and (c) unconditioned (negative control). Each group was further divided into three subgroups according to the following remineralization therapy (n=10): (I) BAG paste (36wt.% BAG), (II) BAG slurry (100wt.% BAG) and (III) de-ionized water (negative control). The average surface roughness and the lesion step height compared to intra-specimen sound enamel reference points were analyzed using non-contact profilometry. Optical changes within the lesion subsurface compared to baseline scans were assessed using optical coherence tomography (OCT). Knoop microhardness evaluated the WSLs' mechanical properties. Raman micro-spectroscopy measured the v-(CO3)(2-)/v1-(PO4)(3-) ratio. Structural changes in the lesion were observed using confocal laser scanning microscopy (CLSM) and scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX). All comparisons were considered statistically significant if p<0.05. RESULTS: PAA-BAG air-abrasion removed 5.1±0.6μm from the lesion surface, increasing the WSL surface roughness. Pre-conditioning WSL surfaces with PAA-BAG air-abrasion reduced subsurface light scattering, increased the Knoop microhardness and the mineral content of the remineralized lesions (p<0.05). SEM-EDX revealed mineral depositions covering the lesion surface. BAG slurry resulted in a superior remineralization outcome, when compared to BAG paste. SIGNIFICANCE: Pre-conditioning WSL surfaces with PAA-BAG air-abrasion modified the lesion surface physically and enhanced remineralization using BAG 45S5 therapy.

Topics
  • Deposition
  • mineral
  • surface
  • scanning electron microscopy
  • tomography
  • glass
  • glass
  • etching
  • Energy-dispersive X-ray spectroscopy
  • spectrometry
  • confocal laser scanning microscopy
  • light scattering
  • profilometry