People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zinelis, Spiros
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2019Silane reactivity and resin bond strength to lithium disilicate ceramic surfacescitations
- 2019A comparison of the compositional, microstructural, and mechanical characteristics of Ni-Free and conventional stainless steel orthodontic wirescitations
- 2019Surface, microstructural, and mechanical characterization of prefabricated pediatric zirconia crownscitations
- 2018Multitechnique characterization of conventional and experimental Ag-based brazing alloys for orthodontic applicationscitations
- 2018Multitechnique characterization of conventional and experimental Ag-based brazing alloys for orthodontic applicationscitations
- 2016Elemental, Morphological, and Corrosion Characterization of Different Surface States of Co-Cr Alloy for Prosthodontic Applications
- 2015Mechanical properties of orthodontic wires derived by instrumented indentation testing (IIT) according to ISO 14577
- 2014Multitechnique characterization of CPTi surfaces after electro discharge machining (EDM)citations
- 2014Micro-Raman spectroscopic analysis of TiO2 phases on the root surfaces of commercial dental implantscitations
- 2005Comparative assessment of the roughness, hardness, and wear resistance of aesthetic bracket materialscitations
- 2004Titanium orthodontic brackets: Structure, composition, hardness and ionic releasecitations
Places of action
Organizations | Location | People |
---|
article
Micro-Raman spectroscopic analysis of TiO2 phases on the root surfaces of commercial dental implants
Abstract
Objectives To identify the TiO2 phases of the root surface of commercially available titanium dental implants, subjected to various surface treatments. Methods The titanium implants studied were: Allfit (ALF), Ice (ICE), IMZ TPS (TPS), Laser Lok (LLK), Prima Connex (PRC), Ospol (OSP), Osseospeed TX (OSS), Osseotite Full (OTF), Replace Select (RPS), SLA (SLA) and Trilobe (TRB). The root parts of the implants (n:2) were analyzed by Raman microspectroscopy employing argon ion laser excitation (514.5 nm wavelength) and a 100 μm × 100 μm sampling area at two randomly selected sites. Results The spectra of OSP and RPS showed the characteristic peaks of anatase, with traces of rutile (RPS). Complex phases composed of anatase, rutile and amorphous TiO2 were identified in ALF, ICE and LLK. Rutile and amorphous TiO2 were found in PRC, OSS, OTF, TPS and TRB, whereas rutile and possibly brookite were traced in SLA. In all implants, except OSP and RPS, peaks assigned to organic impurities (CH2, CH3) and carbonates were recorded. Ti2O3 was identified in OTF, PRC and Al2O3 in TRB. Significance Great variations in the TiO2 polymorphs were registered among the implant root surfaces tested. Considering the important differences in the biological activity of these polymorphs, it can be concluded that provision of information regarding the TiO2 state on implant surfaces should be a mandatory task for implant manufacturers. © 2014 Academy of Dental Materials.