People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
De Munck, Jan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2017Biofilm-induced changes to the composite surfacecitations
- 2017Residual compressive surface stress increases the bending strength of dental zirconiacitations
- 2016Influence of Light Irradiation Through Zirconia on the Degree of Conversion of Composite Cementscitations
- 2016Short fibre-reinforced composite for extensive direct restorations: a laboratory and computational assessment
- 2016Bonding Effectiveness of Luting Composites to Different CAD/CAM Materialscitations
- 2015Aging resistance of surface-treated dental zirconiacitations
- 2015Bonding Effectiveness to Differently Sandblasted Dental Zirconiacitations
- 2014Influence of sintering conditions on low-temperature degradation of dental zirconiacitations
- 2013Fracture toughness versus micro-tensile bond strength testing of adhesive-dentin interfaces.citations
- 2011Bonding effectiveness of luting composites to zirconia ceramics
- 2010Surface Roughness of Two Composites After Etching with Various Acids
- 2007Microrotary fatigue resistance of a HEMA-free all-in-one adhesive bonded to dentin
- 2007Effects of ceramic surface treatments on the bond strength of an adhesive luting agent to CAD-CAM ceramic
- 2007Microrotary fatigue resistance of a HEMA-free all-in-one adhesive bonded to dentin.
- 2006NaOCl degradation of a HEMA-free all-in-one adhesive bonded to enamel and dentin following two air-blowing techniques.citations
- 2006Bond strength of a mild self-etch adhesive with and without prior acid-etching
- 2005Effect of fracture strength of primer-adhesive mixture on bonding effectiveness
- 2005A critical review of the durability of adhesion to tooth tissue: methods and results
- 2005Micro-rotary Fatigue Resistance of a HEMA-free One-step Adhesive
- 2005Micro-tensile bond strength of adhesives bonded to Class-I cavity-bottom dentin after thermo-cycling.citations
- 2005A critical review of the durability of adhesion to tooth tissue: methods and results.citations
- 2005Micro-tensile bond strength of adhesives bonded to class-I cavity-bottom dentin after thermo-cycling
- 2005Fatigue resistance of dentin/composite interfaces with an additional intermediate elastic layer
- 2005Fatigue resistance of dentin/composite interfaces with an additional intermediate elastic layer.citations
- 2004Fatigue resistance of dentin/composite interfaces with an additional shock-absorbing layer
- 2004Bonding of an auto-adhesive luting material to enamel and dentin.citations
- 2003Microtensile bond strengths of an etch&rinse and self-etch adhesive to enamel and dentin as a function of surface treatment
- 2002Micro-tensile bond strength of two adhesives to Erbium:YAG-lased vs. bur-cut enamel and dentin.citations
Places of action
Organizations | Location | People |
---|
article
Influence of sintering conditions on low-temperature degradation of dental zirconia
Abstract
The effect of sintering conditions and concomitant microstructure of dental zirconia (ZrO2) ceramics on their low-temperature degradation (LTD) behavior remains unclear. Objectives. Therefore, their effect on LTD of dental ZrO2 ceramics was investigated. Methods. Three commercial pre-sintered yttria-stabilized dental zirconia materials were sintered at three temperatures (1450 °C, 1550 °C and 1650 °C) applying three dwell times (1, 2 and 4h). Grain size measurements and LTD tests were performed on polished sample surfaces. LTD tests were performed at 134 °C in an autoclave. The amount of monoclinic ZrO2 on the exposed surface was measured by X-ray diffraction (XRD). Results. Higher sintering temperatures and elongated dwell times increased the ZrO2 grain size. Simultaneously, a larger fraction of zirconia grains adopted a cubic crystal structure, resulting in a decreased yttria content in the remaining tetragonal grains. Both the larger grain sizes and the lower average stabilizer content made the tetragonal grains more susceptible to LTD. Overall, independent on the commercial dental zirconia grade tested, the specimens sintered at 1450 °C for 1h combined good mechanical properties with the best resistance to LTD. Significance. In general, increased sintering temperatures and times result in a higher sensitivity to low-temperature degradation of Y-TZP ceramics. ; status: published