People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Watson, Timothy F.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2018In-vitro subsurface remineralisation of artificial enamel white spot lesions pre-treated with chitosan
- 2018Remineralisation of enamel white spot lesions pre-treated with chitosan in the presence of salivary pelliclecitations
- 2015Surface pre-conditioning with bioactive glass air-abrasion can enhance enamel white spot lesion remineralizationcitations
- 2014Enamel white spot lesions can remineralise using bio-active glass and polyacrylic acid-modified bio-active glass powderscitations
- 2013Experimental etch-and-rinse adhesives doped with bioactive calcium silicate-based micro-fillers to generate therapeutic resin-dentin interfacescitations
- 2012Adhesion of Indirect MOD Resin Composite Inlays Luted With Self-adhesive and Self-etching Resin Cementscitations
- 2012Influence of air-abrasion executed with polyacrylic acid-Bioglass 45S5 on the bonding performance of a resin-modified glass ionomer cementcitations
- 2011An in vitro evaluation of selective demineralised enamel removal using bio-active glass air abrasioncitations
- 2011Minimally invasive caries removal using bio-active glass air-abrasioncitations
- 2011Durability of Resin Cement Bond to Aluminium Oxide and Zirconia Ceramics after Air Abrasion and Laser Treatmentcitations
- 2010Flexural strength of glass fibre-reinforced posts bonded to dual-cure composite resin cementscitations
- 2009Y-TZP Ceramics: Key Concepts for Clinical Applicationcitations
- 2009Bond Strength of Resin Cements to a Zirconia Ceramic with Different Surface Treatmentscitations
- 2009An in vitro evaluation of the efficiency of an air-abrasion system using helium as a propellantcitations
- 2009Evaluation of the Surface Roughness and Morphologic Features of Y-TZP Ceramics after Different Surface Treatmentscitations
- 2008An in vitro investigation of the effect and retention of bioactive glass air-abrasive on sound and carious dentinecitations
- 2006Microhardness as a predictor of sound and carious dentine removal using alumina air abrasioncitations
Places of action
Organizations | Location | People |
---|
article
Experimental etch-and-rinse adhesives doped with bioactive calcium silicate-based micro-fillers to generate therapeutic resin-dentin interfaces
Abstract
OBJECTIVES: This study aimed at evaluating the therapeutic bioactive effects on the bond strength of three experimental bonding agents containing modified Portland cement-based micro-fillers applied to acid-etched dentin and submitted to aging in simulated body fluid solution (SBS). Confocal laser (CLSM) and scanning electron microscopy (SEM) were also performed.<br/>METHODS: A type-I ordinary Portland cement was tailored using different compounds such as sodium-calcium-aluminum-magnesium silicate hydroxide (HOPC), aluminum-magnesium-carbonate hydroxide hydrates (HCPMM) and titanium oxide (HPCTO) to create three bioactive micro-fillers. A resin blend mainly constituted by Bis-GMA, PMDM and HEMA was used as control (RES-Ctr) or mixed with each micro-filler to create three experimental bonding agents: (i) Res-HOPC, (ii) Res-HCPMM and (iii) Res-HPCTO. The bonding agents were applied onto 37% H3PO4-etched dentin and light-cured for 30s. After build-ups, they were prepared for micro-tensile bond strength (μTBS) and tested after 24h or 6 months of SBS storage. SEM analysis was performed after de-bonding, while CLSM was used to evaluate the ultra-morphology/nanoleakage and the mineral deposition at the resin-dentin interface.<br/>RESULTS: High μTBS values were achieved in all groups after 24h. Only Res-HOPC and Res-HCPMM showed stable μTBS after SBS storage (6 months). All the resin-dentin interfaces created using the bonding agents containing the bioactive micro-fillers tested in this study showed an evident reduction of nanoleakage and mineral deposition after SBS storage.<br/>CONCLUSION: Resin bonding systems containing specifically tailored Portland cement micro-fillers may promote a therapeutic mineral deposition within the hybrid layer and increase the durability of the resin-dentin bond.