Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Guentsch, Arndt

  • Google
  • 1
  • 4
  • 131

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2012Marginal and internal fit of pressed lithium disilicate partial crowns in vitro: A three-dimensional analysis of accuracy and reproducibility131citations

Places of action

Chart of shared publication
Kuepper, Harald
1 / 1 shared
Schaefer, Oliver
1 / 1 shared
Sigusch, Bernd W.
1 / 8 shared
Watts, Dc.
1 / 116 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Kuepper, Harald
  • Schaefer, Oliver
  • Sigusch, Bernd W.
  • Watts, Dc.
OrganizationsLocationPeople

article

Marginal and internal fit of pressed lithium disilicate partial crowns in vitro: A three-dimensional analysis of accuracy and reproducibility

  • Guentsch, Arndt
  • Kuepper, Harald
  • Schaefer, Oliver
  • Sigusch, Bernd W.
  • Watts, Dc.
Abstract

Objectives: The objective of this in vitro study was to visualize and to quantify the marginal and internal fit of heat-pressed ceramic restorations by a novel three-dimensional procedure. Accuracy and reproducibility of the employed measuring method were determined. Methods: An acrylic model of a lower left first molar was prepared to receive a partial crown and duplicated by single step dual viscosity impressions. Corresponding working casts were formed from Type IV die stone and indirect restorations were fabricated from heat-pressable lithium disilicate ceramics (IPS e.max Press, Ivoclar Vivadent AG, Schaan, Liechtenstein). The acrylic tooth model and the ceramic partial crowns were digitized by a structure light scanner with a measurement-uncertainty of 4 μm and subjected to computer-aided quality inspection. Visual discrepancies in marginal and internal fit were displayed with colors. For quantitative analysis, mean quadratic deviations (RMS) were computed and analyzed by Student's t-test (n = 5, α = 0.05). Results: Mean RMS-values for accuracy (reproducibility) ranged from 34 (14) μm for internal areas to 78 (23) μm for marginal surfaces. Differences in accuracy (p = 0.003) and reproducibility (p <0.001) were statistically significant. In general, areas with sharp internal line angles such as occlusal ridges and the preparation finish line exhibited oversized dimensions, whereas areas with rounded and soft internal line angles were undersized. Significance: The viability of a computer-aided and three-dimensional approach for assessing marginal and internal fit of indirect restorations was demonstrated. Thereby, the obtained results track complex form changes as they occur during laboratory processing. © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Topics
  • surface
  • viscosity
  • Lithium
  • ceramic
  • quantitative determination method