Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Brantley, W. A.

  • Google
  • 1
  • 9
  • 28

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2010Measure of microhardness, fracture toughness and flexural strength of N-vinylcaprolactam (NVC)-containing glass-ionomer dental cements28citations

Places of action

Chart of shared publication
Chee, W. W. L.
1 / 1 shared
Darr, J. A.
1 / 14 shared
Rohpour, N.
1 / 1 shared
Rehman, Ihtesham Ur
1 / 71 shared
Zheng, F.
1 / 1 shared
Ansari, S.
1 / 4 shared
Moshaverinia, A.
1 / 8 shared
Heshmati, R. H.
1 / 1 shared
Schricker, S. R.
1 / 1 shared
Chart of publication period
2010

Co-Authors (by relevance)

  • Chee, W. W. L.
  • Darr, J. A.
  • Rohpour, N.
  • Rehman, Ihtesham Ur
  • Zheng, F.
  • Ansari, S.
  • Moshaverinia, A.
  • Heshmati, R. H.
  • Schricker, S. R.
OrganizationsLocationPeople

article

Measure of microhardness, fracture toughness and flexural strength of N-vinylcaprolactam (NVC)-containing glass-ionomer dental cements

  • Chee, W. W. L.
  • Darr, J. A.
  • Rohpour, N.
  • Rehman, Ihtesham Ur
  • Zheng, F.
  • Ansari, S.
  • Moshaverinia, A.
  • Brantley, W. A.
  • Heshmati, R. H.
  • Schricker, S. R.
Abstract

Objectives: To investigate the effects of N-vinylcaprolactam (NVC)-containing terpolymers on the fracture toughness, microhardness, and flexural strength of conventional glass-ionomer cements (GIC). Methods: The terpolymer of acrylic acid (AA)-itaconic acid (IA)-N-vinylcaprolactam (NVC) with 8:1:1 (AA:IA:NVC) molar ratio was synthesized by free radical polymerization and characterized using 1H NMR and FTIR. Experimental GIC samples were made from a 50% solution of the synthesized terpolymer with Fuji IX powder in a 3.6:1 P/L ratio. Specimens were mixed and fabricated at room temperature. Plane strain fracture toughness (KIc) was measured in accordance with ASTM Standard 399-05. Vickers hardness was determined using a microhardness tester. Flexural strength was measured using samples with dimensions of 2 mm × 2 mm × 20 mm. For all mechanical property tests, specimens were first conditioned in distilled water at 37 °C for 1 day or 1 week. Fracture toughness and flexural strength tests were conducted on a screw-driven universal testing machine using a crosshead speed of 0.5 mm/min. Values of mechanical properties for the experimental GIC were compared with the control group (Fuji IX GIC), using one-way ANOVA and the Tukey multiple range test at α = 0.05. Results: The NVC-modified GIC exhibited significantly higher fracture toughness compared to the commercially available Fuji IX GIC, along with higher mean values of flexural strength and Vickers hardness, which were not significantly different. Significance: It was concluded that NVC-containing polymers are capable of enhancing clinically relevant properties for GICs. This new modified glass-ionomer is a promising restorative dental material. © 2010 Academy of Dental Materials.

Topics
  • impedance spectroscopy
  • polymer
  • glass
  • glass
  • strength
  • cement
  • flexural strength
  • hardness
  • Nuclear Magnetic Resonance spectroscopy
  • fracture toughness