People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Thomas, Andrew G.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2024Toward Water-Resistant, Tunable Perovskite Absorbers Using Peptide Hydrogel Additives
- 2023Elucidating the mechanism of self healing in hydro gel lead halide perovskite composites for use in photovoltaic devices
- 2022Surface stability of ionic-liquid-passivated mixed-cation perovskite probed with in-situ photoelectron spectroscopycitations
- 2022High efficiency semitransparent perovskite solar cells containing 2D nanopore arrays deposited in a single stepcitations
- 2022High efficiency semitransparent perovskite solar cells containing 2D nanopore arrays deposited in a single stepcitations
- 2021Improving the Efficiency, Stability, and Adhesion of Perovskite Solar Cells Using Nanogel Additive Engineeringcitations
- 2021Inelastic background modelling applied to Hard X-ray Photoelectron Spectroscopy of deeply buried layers: a comparison of synchrotron and lab-based (9.25 keV) measurementscitations
- 2021Controlling the Thermoelectric Properties of Nb-Doped TiO2 Ceramics through Engineering Defect Structurescitations
- 2020Functionalization of MoO3[sbnd]NiMoO4 nanocomposite using organic template for energy storage applicationcitations
- 2020Synthesis and analysis of ZnO-CoMoO4 incorporated organic compounds for efficient degradation of azo dye pollutants under dark ambient conditionscitations
- 2020Functionalization of MoO 3 [sbnd]NiMoO 4 nanocomposite using organic template for energy storage applicationcitations
- 2020Using soft polymer template engineering of mesoporous TiO2 scaffolds to increase perovskite grain size and solar cell efficiencycitations
- 2020Evaluation of electrochemical properties for water splitting by NiO nano-cubes synthesized using Olea ferruginea Roylecitations
- 2020Organic template-assisted green synthesis of CoMoO4 nanomaterials for the investigation of energy storage propertiescitations
- 2019Air-Stable Methylammonium Lead Iodide Perovskite Thin Films Fabricated via Aerosol-Assisted Chemical Vapor Deposition from a Pseudohalide Pb(SCN)2 Precursorcitations
- 2019Interaction of a tripeptide with titania surfaces: RGD adsorption on rutile TiO2(110) and model dental implant surfacescitations
- 2019Preliminary study of hydroxyapatite particles air abrasive blasting on Mg-4Zn-0.3Ca surfacecitations
- 2019A molecular precursor route to quaternary chalcogenide CFTS (Cu2FeSnS4) powders as potential solar absorber materialscitations
- 2018Optical and Electrical Studies of CdS Thin Films with thickness variationcitations
- 2018Corrosion protection of carbon steel by tetraphosphonates of systematically different molecular sizecitations
- 2018Ambient-Air-Stable Inorganic Cs2SnI6 Double Perovskite Thin Films via Aerosol-Assisted Chemical Vapour Depositioncitations
- 2017Reduced electrical performance of Zn enriched ZnTe nanoinclusion semiconductors thin films for buffer layer in solar cellscitations
- 2014Multitechnique characterization of CPTi surfaces after electro discharge machining (EDM)citations
- 2012PEGylation of nanosubstrates (Titania) with multifunctional reagents: At the crossroads between nanoparticles and nanocompositescitations
- 2010Surface characterization of zirconia dental implantscitations
- 2007Electronic properties of the interface between p-CuI and anatase-phase n-Ti O2 single crystal and nanoparticulate surfaces: A photoemission studycitations
- 2005Resonant photoemission of transition metal perovskitescitations
- 2002Electronic structure and reactivity of TM-doped La1-xSrxCoO3 (TM = Ni, Fe) catalystscitations
Places of action
Organizations | Location | People |
---|
article
Surface characterization of zirconia dental implants
Abstract
Objectives: The aim of the study was to characterize the chemical composition, microstructure and roughness of two commercially available zirconia dental implants (WhiteSky and Zit-Z). Methods: The chemical composition of the cervical collar and threaded root parts of the implants (n = 2) were studied by XPS and HV-EDX. LV-SEM was used for morphological assessment, Raman microanalysis for microstructural characterization and optical profilometry for surface roughness measurements. XRD, HV-EDX and Raman microanalysis of bulk regions (longitudinal sections) were used as reference. Results: XPS showed the presence of C, O, Zr and Y (collar) plus Al (root) at implant surfaces. More C (10-26 at%) and a lower Al/Zr ratio were found in WhiteSky (1.05 vs 1.26 in Zit-Z). Zr, Y and Al were detected in single, fully oxidized states. The same elements, plus Hf, were identified by HV-EDX at bulk and surface regions, with a Al/Zr ratio higher in WhiteSky (0.17 vs 0.09 in Zit-Z). Na, K and Cl contaminants were traced at implant root parts by both methods. XRD analysis of cross-sectioned specimens revealed the presence of monoclinic and tetragonal zirconia along with cubic yttria phases. Raman microanalysis showed that the monoclinic zirconia volume fraction was higher at root surfaces than the collar. No monoclinic phase was found at bulk regions. Significantly higher Sa and Sq values were recorded in WhiteSky than Zit-Z, whereas Zit-Z showed higher Rt value. Significance: The differences found between the implants in the extent of carbon contamination, residual alumina content, tetragonal to monoclinic ZrO2 phase transformation and 3D-roughness parameters may contribute to a substantial differentiation in the cellular and tissue response. © 2009 Academy of Dental Materials.