Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fleischer, Sharly

  • Google
  • 2
  • 4
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2010A novel experimental method for the local mechanical testing of human coronal dentin12citations
  • 2009Compressive response of dentin micro-pillars2citations

Places of action

Chart of shared publication
Cohen, Sidney
2 / 29 shared
Zhang, Kaiyin
2 / 2 shared
Wagner, Hanoch Daniel
2 / 10 shared
Ziskind, Daniel
2 / 2 shared
Chart of publication period
2010
2009

Co-Authors (by relevance)

  • Cohen, Sidney
  • Zhang, Kaiyin
  • Wagner, Hanoch Daniel
  • Ziskind, Daniel
OrganizationsLocationPeople

article

A novel experimental method for the local mechanical testing of human coronal dentin

  • Cohen, Sidney
  • Zhang, Kaiyin
  • Wagner, Hanoch Daniel
  • Fleischer, Sharly
  • Ziskind, Daniel
Abstract

<p>Objectives: The small volume of human dentin available for sample preparation and the local variations in its microstructure present a real challenge in the determination of their mechanical properties. The main purpose of the present study was to develop a new procedure for the preparation and mechanical testing of small-scale specimens of biomaterials such as dentin, so as to probe local mechanical properties as a function of microstructure. Methods: Ultra short laser pulses were used to mill a block of dentin into an array of 16 μm size dentin pillars. These could then be individually tested in compression with an instrumented nanoindenter fitted with a 30 μm wide flat punch. Results: The laser-based pillar preparation procedure proved effective and reliable. Data was produced for the mechanical properties of a first set of dry dentin micro-pillars. Significance: This novel experimental approach enables the preparation and compression of micron-scale samples with well-defined microstructure. For dentin, this means samples containing a relatively small number of well-defined parallel tubules, with a distinct orientation relative to the applied load. The ability to isolate the separate effects of microstructural parameters on the mechanical properties is of major significance for future substantiation of theoretical models.</p>

Topics
  • impedance spectroscopy
  • microstructure
  • biomaterials