People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Alves, Jl
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Artificial reefs through additive manufacturing: a review of their design, purposes and fabrication process for marine restoration and managementcitations
- 2023Potential Use of Sugarcane Bagasse Ash in Cementitious Mortars for 3D Printingcitations
- 2023Analysis of Lattices Based on TPMS for Bone Scaffold
- 20224D structures for the short-time building of emergency shelterscitations
- 2022Design and validation of an innovative 3D printer containing a co-rotating twin screw extrusion unitcitations
- 2022A bio-inspired remodelling algorithm combined with a natural neighbour meshless method to obtain optimized functionally graded materialscitations
- 2021Development of 3D printing sustainable mortars based on a bibliometric analysiscitations
- 2021The influence of infill density gradient on the mechanical properties of PLA optimized structures by additive manufacturingcitations
- 2021Effect of 3D printer enabled surface morphology and composition on coral growth in artificial reefscitations
- 2021Using a radial point interpolation meshless method and the finite element method for application of a bio-inspired remodelling algorithm in the design of optimized bone scaffoldcitations
- 2020Influence of multiple scan fields on the processing of 316L stainless steel using laser powder bed fusioncitations
- 2020Machinability of PA12 and short fibre-reinforced PA12 materials produced by fused filament fabricationcitations
- 2019Study of the influence of sintering temperature on water absorption in the manufacture of porcelain cupscitations
- 2017Effect of the chemical milling process on the surface of titanium aluminide castings
- 2017Study of the viability of manufacturing ceramic moulds by additive manufacturing for rapid castingcitations
- 2017Experimental characterization of ceramic shells for investment casting of reactive alloyscitations
- 2017Reinforcement of a biopolymer matrix by lignocellulosic agro-wastecitations
- 2017The influence of face coat material on reactivity and fluidity of the Ti6Al4V and TiAl alloys during investment castingcitations
- 2015DEVELOPMENT OF A PROJECT AND MANUFACTURE METHODOLOGY FOR TITANIUM ALLOYS JOINT PROSTHESES
Places of action
Organizations | Location | People |
---|
article
Experimental characterization of ceramic shells for investment casting of reactive alloys
Abstract
The investment casting of reactive Ti and TiAl alloys requires the use of selected ceramics in the face-coat layer to prevent the reaction between the cast metal and ceramic shell, avoiding the formation of a hard layer at the metallic components surface. This work aims to study the influence of ceramic shells composition in some of its characteristics such as flexural strength, friability and dimensional accuracy. The microstructure of the shells was evaluated by SEM. Changes in the face-coat and back-up ceramic shells composition determines the ceramic shell strength to withstand the casting stage with adequate mould permeability and thermal conductivity, and a compromise resistance for knock-out. All the non-conventional ceramic shell systems with interest for reactive alloys, based on fumed alumina binder and alumina sand for the back-ups, present higher dimensional stability (low shrinkage or expansion) compared with traditional systems based on colloidal silica binder and zircon and aluminosilicates backups. In this work, better mechanical strength and lower friability were obtained with non-conventional face-coats of alumina and polymer binders, both with yttria flour and stucco, followed by alumina back-ups. Selecting the right ceramic shell composition, it is possible to achieve adequate properties for casting titanium alloys.