People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Farooq, Muhammad
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Phytoassisted synthesis of CuO and Ag–CuO nanocomposite, characterization, chemical sensing of ammonia, degradation of methylene bluecitations
- 2024Oil mediated polymer based green synthesis of calcium hydroxide nanoparticles and their application in bone conservationcitations
- 2023Experimental optimization of various heat sinks using passive thermal management systemcitations
- 2021Nanomaterials in the Management of Gram-Negative Bacterial Infectionscitations
- 2021Lignocellulosic building blocks for aerogel and nanocomposite applicationscitations
- 2021Toward waste valorization by converting bioethanol production residues into nanoparticles and nanocomposite filmscitations
- 2020Three-Dimensional Printed Cell Culture Model Based on Spherical Colloidal Lignin Particles and Cellulose Nanofibril-Alginate Hydrogelcitations
- 2020Three-Dimensional Printed Cell Culture Model Based on Spherical Colloidal Lignin Particles and Cellulose Nanofibril-Alginate Hydrogelcitations
- 2019Strong, Ductile, and Waterproof Cellulose Nanofibril Composite Films with Colloidal Lignin Particlescitations
- 2015Carbon-based nanofillers/poly(butylene terephthalate): thermal, dielectric, electrical and rheological propertiescitations
- 2013Strengthening and degradation mechanisms in austenitic stainless steels at elevated temperature
- 2012Numerical modelling and validation of precipitation kinetics in advanced creep resistant austenitic steel
Places of action
Organizations | Location | People |
---|
document
Experimental optimization of various heat sinks using passive thermal management system
Abstract
© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). ; Organic phase change materials are extensively researched for passive cooling of electronic components due to the high heat of fusion, however, owing to the issue of thermal conductivity, it is difficult to improve the thermal performance of electronic components. However, the effective thermal performance of modern electronic devices is becoming popular due to thermal constraints of the circuit's non-uniform temperature distribution and high heating power generation. Thus, nanomaterials incorporated into phase change materials (PCMs) to improve thermal conductivity, which aids in heat removal and sustains significant heat sink operational performance for extended periods of time. In current research work, at heating powers of (10–30 W), the thermal performance outcome of three heat sink -configurations such as unfinned heat sink, circular pin-finned heat sink and metallic foam integrated heat sink were investigated with several alumina nanomaterials mass concentrations (0.15, 0.20 and 0.25 wt%) incorporated in phase change materials (for example RT-70HC). All three heat sinks revealed lower base temperature with the addition of alumina NePCM (αRT-70HC) phase change materials in their internal cavity compared to the empty unfinned heat sink. The findings showed good performance of metallic foam integrated heat sink in lowering the temperature & increasing safe functional time at two distinct temperatures. The largest decrease in temperature was found to be 35.76% and the largest growth in maximum functional time was 400% for metallic foam integrated heat sink. Therefore, using alumina nanomaterials in phase change material is recommended to optimize the thermal performance of the passive cooling techniques. ; Peer reviewed