People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lauermannová, Anna-Marie
University of Chemistry and Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024Impact of nano-dopants on the mechanical and physical properties of magnesium oxychloride cement composites – Experimental assessmentcitations
- 2023Utilization of waste carbon spheres in magnesium oxychloride cementcitations
- 2023Case study on nanoscale modification of MOC-based construction composites: Introduction of molybdenum disulfidecitations
- 2023Thermally treated coal mining waste as a supplementary cementitious material – Case study from Bogdanka mine, Polandcitations
- 2023Utilization of extracted carbonaceous shale waste in eco-friendly cementitious blendscitations
- 2023Magnesium oxychloride cement-based composites for latent heat storage: The effect of the introduction of multi-walled carbon nanotubescitations
- 2023Case study on MOC composites enriched by foamed glass and ground glass waste: Experimental assessment of material properties and performancecitations
- 2023MOC Composites for Constructions: Improvement of Water Resistance by Addition of Nanodopants and Polyphenolcitations
- 2023Lactose/tannin-based calcium aluminate coatings for carbon-bonded alumina foam filters: A novel approach in environment-friendly steel melt filtrationcitations
- 2023MgO–C refractories based on refractory recyclates and environmentally friendly binderscitations
- 2022Ultra-high strength multicomponent composites based on reactive magnesia: Tailoring of material properties by addition of 1D and 2D carbon nanoadditivescitations
- 2022Magnesium oxychloride cement with phase change material: Novel environmentally-friendly composites for heat storagecitations
- 2022Assessment of wood chips ash as efficient admixture in foamed glass-MOC compositescitations
- 2022Co-Doped Magnesium Oxychloride Composites with Unique Flexural Strength for Construction Usecitations
- 2022Solid-liquid equilibria in the Bi-Ca-Co-O system
- 2022Graphene- and Graphite Oxide-Reinforced Magnesium Oxychloride Cement Composites for the Construction Usecitations
- 2021Regolith-based magnesium oxychloride composites doped by graphene: Novel high-performance building materials for lunar constructionscitations
- 2021Graphene- And graphite oxide-reinforced magnesium oxychloride cement composites for the construction usecitations
- 2021Magnesium oxychloride-graphene composites: Towards high strength and water resistant materials for construction industrycitations
- 2021The influence of graphene specific surface on material properties of MOC-based composites for construction usecitations
- 2020Synthesis, structure, and thermal stability of magnesium oxychloride 5Mg(OH)2·MgCl2·8H2Ocitations
- 2020Magnesium Oxybromides MOB-318 and MOB-518: Brominated Analogues of Magnesium Oxychloridescitations
- 2020Towards novel building materials: High-strength nanocomposites based on graphene, graphite oxide and magnesium oxychloridecitations
- 2020Low-Carbon Composite Based on MOC, Silica Sand and Ground Porcelain Insulator Wastecitations
Places of action
Organizations | Location | People |
---|
article
Utilization of waste carbon spheres in magnesium oxychloride cement
Abstract
The Portland cement (PC) industry is a big producer of CO2 – a major contributor to the global warming. As the world tends to reduce the CO2 emissions because of its negative effect, a sustainable and efficient PC alternative is needed to be found. One of the most promising substitute is based on reactive magnesia – magnesium oxychloride cement (MOC). This paper deals with the design, development, and characterization of environmentally friendly composites based on MOC. In addition to the standard quartz sand filler, carbon spheres-based waste produced by polypropylene treatment via plasma gasification was used as a nanoadditive. Before the preparation of the composites themselves, the carbon spheres (CS) were analysed with a wide range of analytical methods in order to determine their microstructure and composition. The CS were used in the amount of 0.5, 1.0, and 3.0 wt% related to the weight of the pure MOC paste. The prepared composite samples were tested for their microstructure, phase and chemical composition, micro- and macrostructural parameters, and mechanical properties after 28 days of maturing. Furthermore, the influence of CS on the hygric properties and the water resistance of the MOC-based composites were studied after 24 h-long immersion in water. It has been shown, that with the increasing amount of CS, the mechanical parameters improve quite rapidly, making CS an enhancing eco-friendly nanoadditive. It was also shown, that CS helps to slow down water transport in MOC-based composites, which is a key aspect in the improvement of their water resistance and overall durability after exposure to humidity. The incorporation of carbon spheres-based waste as a nanoadditive in MOC-based composites shows promising improvements in mechanical properties and water resistance, contributing to the development of environmentally friendly construction materials. © 2023 The Authors