People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lauermannová, Anna-Marie
University of Chemistry and Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024Impact of nano-dopants on the mechanical and physical properties of magnesium oxychloride cement composites – Experimental assessmentcitations
- 2023Utilization of waste carbon spheres in magnesium oxychloride cementcitations
- 2023Case study on nanoscale modification of MOC-based construction composites: Introduction of molybdenum disulfidecitations
- 2023Thermally treated coal mining waste as a supplementary cementitious material – Case study from Bogdanka mine, Polandcitations
- 2023Utilization of extracted carbonaceous shale waste in eco-friendly cementitious blendscitations
- 2023Magnesium oxychloride cement-based composites for latent heat storage: The effect of the introduction of multi-walled carbon nanotubescitations
- 2023Case study on MOC composites enriched by foamed glass and ground glass waste: Experimental assessment of material properties and performancecitations
- 2023MOC Composites for Constructions: Improvement of Water Resistance by Addition of Nanodopants and Polyphenolcitations
- 2023Lactose/tannin-based calcium aluminate coatings for carbon-bonded alumina foam filters: A novel approach in environment-friendly steel melt filtrationcitations
- 2023MgO–C refractories based on refractory recyclates and environmentally friendly binderscitations
- 2022Ultra-high strength multicomponent composites based on reactive magnesia: Tailoring of material properties by addition of 1D and 2D carbon nanoadditivescitations
- 2022Magnesium oxychloride cement with phase change material: Novel environmentally-friendly composites for heat storagecitations
- 2022Assessment of wood chips ash as efficient admixture in foamed glass-MOC compositescitations
- 2022Co-Doped Magnesium Oxychloride Composites with Unique Flexural Strength for Construction Usecitations
- 2022Solid-liquid equilibria in the Bi-Ca-Co-O system
- 2022Graphene- and Graphite Oxide-Reinforced Magnesium Oxychloride Cement Composites for the Construction Usecitations
- 2021Regolith-based magnesium oxychloride composites doped by graphene: Novel high-performance building materials for lunar constructionscitations
- 2021Graphene- And graphite oxide-reinforced magnesium oxychloride cement composites for the construction usecitations
- 2021Magnesium oxychloride-graphene composites: Towards high strength and water resistant materials for construction industrycitations
- 2021The influence of graphene specific surface on material properties of MOC-based composites for construction usecitations
- 2020Synthesis, structure, and thermal stability of magnesium oxychloride 5Mg(OH)2·MgCl2·8H2Ocitations
- 2020Magnesium Oxybromides MOB-318 and MOB-518: Brominated Analogues of Magnesium Oxychloridescitations
- 2020Towards novel building materials: High-strength nanocomposites based on graphene, graphite oxide and magnesium oxychloridecitations
- 2020Low-Carbon Composite Based on MOC, Silica Sand and Ground Porcelain Insulator Wastecitations
Places of action
Organizations | Location | People |
---|
article
Case study on MOC composites enriched by foamed glass and ground glass waste: Experimental assessment of material properties and performance
Abstract
Nowadays, many researchers are intensively trying to develop novel environmentally friendly composite materials for construction with a view to replace widely used Portland cement (PC). Current hopes are pinned on the use of materials based on reactive magnesia. In this case study, composites prepared from magnesium oxychloride cement (MOC), ground waste glass, and either quartz sand or foam glass were prepared and analyzed in detail. The main aim was to design and develop novel composites with low unit weight, good thermal insulation performance, and high water damage resistance. In addition, the application of secondary-raw materials as a partial substitution for common fillers was accented. The properties of fresh and matured composites were studied and analyzed within the framework of a complex experimental campaign involving phase composition assessment, structural, textural, mechanical, hygric, thermal, and durability parameters testing, as well as the identification of main chemical bonds in the formed hardened materials. The usage of ground waste glass led to a significant drop in porosity, densified microstructure, enhanced compressive strength, reduced water ingress, and improved durability. In general, the prepared composites provide properties and performance, which make them promising eco-efficient alternatives to PC-based construction composites. © 2023 The Authors