Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sigvardsen, Nina Marie

  • Google
  • 3
  • 4
  • 14

Technical University of Denmark

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2021Screening for key material parameters affecting early-age and mechanical properties of blended cementitious binders with mine tailings10citations
  • 2020Utilisation of Wood Ash in Cement-Based Materialscitations
  • 2016The necessity of recovering soluble phosphorus from sewage sludge ashes before use in concrete based on concrete setting and workability4citations

Places of action

Chart of shared publication
Bagger, Anne Mette Tholstrup
1 / 3 shared
Kunther, Wolfgang
1 / 32 shared
Jensen, Pernille Erland
1 / 15 shared
Ottosen, Lisbeth M.
1 / 34 shared
Chart of publication period
2021
2020
2016

Co-Authors (by relevance)

  • Bagger, Anne Mette Tholstrup
  • Kunther, Wolfgang
  • Jensen, Pernille Erland
  • Ottosen, Lisbeth M.
OrganizationsLocationPeople

article

Screening for key material parameters affecting early-age and mechanical properties of blended cementitious binders with mine tailings

  • Sigvardsen, Nina Marie
  • Bagger, Anne Mette Tholstrup
  • Kunther, Wolfgang
  • Jensen, Pernille Erland
Abstract

Considering the vast amounts and wide variability of tailings available worldwide, means to assess the potential of tailings for cement clinker replacement based on their physical, chemical and mineralogical characteristics would be useful. This work studied the early-age properties and mechanical performance of mortar of Portland limestone cement (CEM II/A-LL) clinker in a ternary blend with partial clinker substitution by 13 metal and mineral mine tailings. The properties studied included workability, setting time, porosity and compressive strength. The effects of replacement level and mine tailing characteristics on the performance of mortar were assessed by chemometrics.<br/>The results showed that most mine tailings reduced the workability of mortar (3–19 %) and that an increased replacement level reduced the workability further. For most mine tailings, the initial setting time was identical to the reference, while they reached the final setting faster. Tailings had a variable impact on the porosity at low replacement, while porosity generally increased at a higher replacement. The compressive strength decreased with increasing replacement in most cases, and a clear negative correlation was found between compressive strength and porosity. However, five mine tailings developed up to 10 % higher strength after 28 days with 20 % supplementary composite material compared to the reference.<br/>Chemometric analyses showed that tailings with high specific surface area and silicon dioxide content influenced the mechanical properties of the mortar most positively. Conversely, larger grain sizes, high loss on ignition, calcium oxide and calcium carbonate content impacted compressive strength negatively.<br/>The analyzed characteristics do, however, not fully explain the resulting early-age and mechanical properties, thus additional investigations are needed to understand the performance in detail.

Topics
  • mineral
  • surface
  • grain
  • grain size
  • strength
  • composite
  • cement
  • Silicon
  • porosity
  • Calcium