People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Chronakis, Ioannis S.
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2023Enhanced electric field and charge polarity modulate the microencapsulation and stability of electrosprayed probiotic cells ( Streptococcus thermophilus , ST44)citations
- 2023Electric field charge polarity triggers the organization and promotes the stability of electrosprayed probiotic cellscitations
- 2023Enhanced electric field and charge polarity modulate the microencapsulation and stability of electrosprayed probiotic cells (Streptococcus thermophilus, ST44)citations
- 2021The determinant role of fabrication technique in final characteristics of scaffolds for tissue engineering applications:A focus on silk fibroin-based scaffoldscitations
- 2021The determinant role of fabrication technique in final characteristics of scaffolds for tissue engineering applicationscitations
- 2020Self-powered humidity sensor based on polypyrrole modified melamine aerogelcitations
- 2018Fabrication, characterization, and biocompatibility assessment of a novel elastomeric nanofibrous scaffold: A potential scaffold for soft tissue engineeringcitations
- 2018Fabrication, characterization, and biocompatibility assessment of a novel elastomeric nanofibrous scaffold: A potential scaffold for soft tissue engineeringcitations
- 2017Electrospun Polymer Fiber Lasers for Applications in Vapor Sensingcitations
- 2017Electrospun Polymer Fiber Lasers for Applications in Vapor Sensingcitations
- 2016Optical sensors from electrohydrodynamic jetted polymer fiber resonatorscitations
- 2016Optical sensors from electrohydrodynamic jetted polymer fiber resonatorscitations
- 2015Electrospun dye-doped fiber networks: lasing emission from randomly distributed cavities
Places of action
Organizations | Location | People |
---|
article
Enhanced electric field and charge polarity modulate the microencapsulation and stability of electrosprayed probiotic cells (Streptococcus thermophilus, ST44)
Abstract
The effect of the polarity of the direct current electric field on the “organization” of <i>Streptococcus thermophilus</i> (ST44) probiotic cells within electrosprayed maltodextrin microcapsules was investigated. The generated electrostatic forces between the negatively surface-charged probiotic cells and the applied negative polarity on the electrospray nozzle, allowed to control the location of the cells towards the core of the electrosprayed microcapsules. This “organization” of the cells increased the evaporation of the solvent (water) and successively the glass transition temperature (Tg) of the electrosprayed microcapsules. Moreover, the utilization of auxiliary ring-shaped electrodes between the nozzle and the collector, enhanced the electric field strength and contributed further to the increase of the Tg. Numerical simulation, through Finite Element Method (FEM), shed light to the effects of the additional ring-electrode on the electric field strength, potential distribution, and controlled deposition of the capsules on the collector. Furthermore, when the cells were located at the core of the microcapsules their viability was significantly improved for up to 2 weeks of storage at 25 °C and 35% RH, compared to the case where the probiotics were distributed towards the surface. Overall, this study reports a method to manipulate the encapsulation of the surface charged probiotic cells within electrosprayed microcapsules, utilizing the polarity of the electric field and additional ring-electrodes.