People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Goldie, Kenneth N.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Carbon nanotube growth on AlN support
Abstract
In this work, carbon nanotubes (CNTs) are grown from Ni and Fe nanoparticles supported on a rough AlN surface. Although, identical experimental parameters are used during dewetting (island formation) via thermal treatment, Ni particles appear metallic and larger, whereas Fe particles are smaller and slightly oxidized. This difference in the nanoparticle chemical state and morphology reflects to CNTs during catalytic chemical vapor deposition in terms of their CNT growth mode and size: tip-growth mode for Ni catalyst with CNT diameters of up to 40 nm, whereas base-growth mode for Fe with CNT diameters typically less than 10 nm are observed. (C) 2014 Elsevier B.V. All rights reserved.