People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Harrison, Robert W.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2023Microstructure and radiation tolerance of molybdenum-rich glass composite nuclear waste formscitations
- 2023In situ TEM study of heavy-ion irradiation-induced amorphisation and electron beam-induced recrystallisation in powellite (CaMoO4)citations
- 2022Hydrotalcite colloid stability and interactions with uranium(VI) at neutral to alkaline pH.citations
- 2019Chemical effects on He bubble superlattice formation in high entropy alloyscitations
- 2019Local chemical instabilities in 20Cr-25Ni Nb-stabilised austenitic stainless steel induced by proton irradiationcitations
- 2019Evolution of radiation-induced lattice defects in 20/25 Nb-stabilised austenitic stainless steel during in-situ proton irradiationcitations
- 2019Intermetallic Re phases formed in ion irradiated WRe alloycitations
- 2019A Transmission Electron Microscopy study of the neutron-irradiation response of Ti-based MAX phases at high temperaturescitations
- 2018Enhanced radiation tolerance of tungsten nanoparticles to He ion irradiationcitations
- 2017Thermal Evolution of the Proton Irradiated Structure in Tungsten–5 wt% Tantalumcitations
- 2016Diffusion-based and creep continuum damage modelling of crack formation during high temperature oxidation of ZrN ceramicscitations
- 2014Nuclear Applications for Ultra-High Temperature Ceramics and MAX Phasescitations
- 2014Thermophysical characterisation of ZrCxNy ceramics fabricated via carbothermic reduction-nitridationcitations
Places of action
Organizations | Location | People |
---|
article
Chemical effects on He bubble superlattice formation in high entropy alloys
Abstract
The probable formation mechanism of He bubble superlattices relies on long range anisotropic diffusion of self-interstitial atoms (SIAs). Here we study He ion irradiation of pure Ni and two equiatomic concentrated solid-solution alloys (CSAs) of FeNi and FeCrNiCo. It is expected from the significantly reduced diffusion of SIAs in CSAs, including high entropy alloys (HEAs), that long range anisotropic SIA migration cannot be active. We report the formation of a He bubble lattice in pure Ni, and for the first time in FeNi and FeCrNiCo systems under 30 keV He ion irradiation at room temperature. The ion dose and flux required to form a bubble superlattice increase with chemical complexity. Comparing to Ni, SIA clusters change directions more frequently due to anisotropic elementally-biased diffusion from the high degree of chemical non-homogeneity in CSAs. Nevertheless, anisotropic 1-D diffusion of interstitial defects is possible in these complex alloys over incrementally longer time scales and irradiation doses. The sluggish diffusion, characteristic in CSAs, leads to smaller superlattice parameter and smaller bubble diameters. The chemical biased SIA diffusion and its effects on He evolution revealed here have important implications on understanding and improving radiation tolerance over a wide range of extreme conditions.