Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Li, Ziyu

  • Google
  • 4
  • 6
  • 38

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2024Review of the state of art of Li-based inhibitors and coating technology for the corrosion protection of aluminium alloys13citations
  • 2024Spatiotemporally resolved corrosion protection of AA2024-T3 by a lithium-based conversion layer3citations
  • 2023Local scanning electrochemical microscopy analysis of a lithium-based conversion layer on AA2024-T3 at progressive stages of formation4citations
  • 2022Evaluation of the formation and protectiveness of a lithium-based conversion layer using electrochemical noise18citations

Places of action

Chart of shared publication
Mol, Arjan
4 / 64 shared
Gonzalez-Garcia, Yaiza
4 / 27 shared
Hughes, Anthony E.
1 / 10 shared
Visser, Peter
4 / 23 shared
Li, Gaojie
1 / 1 shared
Kosari, Ali
1 / 14 shared
Chart of publication period
2024
2023
2022

Co-Authors (by relevance)

  • Mol, Arjan
  • Gonzalez-Garcia, Yaiza
  • Hughes, Anthony E.
  • Visser, Peter
  • Li, Gaojie
  • Kosari, Ali
OrganizationsLocationPeople

article

Spatiotemporally resolved corrosion protection of AA2024-T3 by a lithium-based conversion layer

  • Mol, Arjan
  • Gonzalez-Garcia, Yaiza
  • Li, Ziyu
  • Visser, Peter
Abstract

<p>In this work, the corrosion mechanism of AA2024-T3 covered by a lithium-based conversion layer is studied with high spatial and temporal resolution. Although the aluminium alloy surface is protected by a multi-layered conversion layer, areas around intermetallic phases (IMPs) represent weak spots due to an insufficient generation of a protective inner dense layer. For the freshly formed conversion layer, both the top and the inner layer undergo a gradual dissolution upon exposure to relatively dilute NaCl solution within 2 h due to their chemical instability. For the ambiently-aged conversion layer, most corrosion activity around IMPs is related to the S-phase and large constituent phases, due to their active nature and the lower local conversion layer quality, respectively. Moreover, S-phase-related corrosion activity lasts approximately 8 h due to fast dissolution whereas reactions induced by large constituent particles remain active over the entire re-immersion period of 12 h.</p>

Topics
  • impedance spectroscopy
  • surface
  • corrosion
  • phase
  • aluminium
  • layered
  • aluminium alloy
  • Lithium
  • intermetallic