Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dobson, Tamsin H. E.

  • Google
  • 3
  • 6
  • 13

University of Bristol

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Corrosion mechanisms of plasma welded Nickel aluminium bronze immersed in seawater11citations
  • 2023The role of corrosion pit topography on stress concentrationcitations
  • 2022The Role of Surface Roughness on Pitting Corrosion Initiation in Nickel Aluminium Bronzes in Air2citations

Places of action

Chart of shared publication
Ganguly, Supriyo
1 / 56 shared
Coules, Harry E.
3 / 17 shared
Reid, Mark
1 / 9 shared
Rajamudili, Kuladeep
1 / 1 shared
Larrosa, Nicolas O.
3 / 21 shared
Kabra, Saurabh
1 / 17 shared
Chart of publication period
2024
2023
2022

Co-Authors (by relevance)

  • Ganguly, Supriyo
  • Coules, Harry E.
  • Reid, Mark
  • Rajamudili, Kuladeep
  • Larrosa, Nicolas O.
  • Kabra, Saurabh
OrganizationsLocationPeople

article

Corrosion mechanisms of plasma welded Nickel aluminium bronze immersed in seawater

  • Ganguly, Supriyo
  • Dobson, Tamsin H. E.
  • Coules, Harry E.
  • Reid, Mark
  • Rajamudili, Kuladeep
  • Larrosa, Nicolas O.
Abstract

Nickel Aluminium Bronzes (NAB) are copper-based multi-phase alloys used extensively in marine applications. NAB is vulnerable to seawater corrosion, however the interaction between its corrosion mechanisms and real-world factors including biofouling, weld microstructure and residual stress are poorly understood. Seawater corrosion tests were performed on plasma-welded NAB in laboratory and marine environments, demonstrating that the retained β’ phase in the Heat Affected Zone (HAZ) experiences Selective Phase Corrosion (SPC), whereas crevice corrosion associated with SPC of the κIII phase occurs at biofouled and stressed areas of parent material. These factors, seldom simulated in physical tests, severely impact NAB’s corrosion resistance. ; The authors acknowledge the support of ANSTO in providing access to instruments, capabilities and facilities used in this via Proposal 13838. This work was supported by the EPSRC [grant number EP/R513179/1] and Babcock International [studentship number 2019 - 4720].

Topics
  • impedance spectroscopy
  • microstructure
  • nickel
  • phase
  • aluminium
  • copper
  • bronze
  • crevice corrosion