People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Spieckermann, Florian
Montanuniversität Leoben
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (31/31 displayed)
- 2024Semi-analytical and experimental heat input study of additively manufactured Zr-based bulk metallic glasscitations
- 2024Controlling the Glassy State toward Structural and Mechanical Enhancement: Additive Manufacturing of Bulk Metallic Glass Using Advanced Laser Beam Shaping Technologycitations
- 2024Exploring Refinement Characteristics in FeTi‐Cu x Composites: A Study of Localization and Abrasion Constraintscitations
- 2024Mechanical processing and thermal stability of the equiatomic high entropy alloy TiVZrNbHf under vacuum and hydrogen pressurecitations
- 2023Rejuvenation engineering in metallic glasses by complementary stress and structure modulationcitations
- 2023Can Severe Plastic Deformation Tune Nanocrystallization in Fe-Based Metallic Glasses?citations
- 2023Hierarchical Surface Pattern on Ni-Free Ti-Based Bulk Metallic Glass to Control Cell Interactions.
- 2023From unlikely pairings to functional nanocomposites: FeTi–Cu as a model systemcitations
- 2023Toxic element-free Ti-based metallic glass ribbons with precious metal additionscitations
- 2023Controlling the Glassy State toward Structural and Mechanical Enhancement: Additive Manufacturing of Bulk Metallic Glass Using Advanced Laser Beam Shaping Technologycitations
- 2023Hierarchical Surface Pattern on Ni‐Free Ti‐Based Bulk Metallic Glass to Control Cell Interactionscitations
- 2023Short-range order patterns in Mg66Zn29Ca5 metallic glasscitations
- 2022Structure-dynamics relationships in cryogenically deformed bulk metallic glasscitations
- 2022Antibacterial activity, cytocompatibility, and thermomechanical stability of Ti40Zr10Cu36Pd14 bulk metallic glasscitations
- 2022New-generation biocompatible Ti-based metallic glass ribbons for flexible implantscitations
- 2022Magnetron Sputtered Non‐Toxic and Precious Element‐Free TiZrGe Metallic Glass Nanofilms with Enhanced Biocorrosion Resistancecitations
- 2022Maximizing the degree of rejuvenation in metallic glassescitations
- 2022Surmounting the thermal processing limitscitations
- 2021In Situ Synchrotron X‐Ray Diffraction during High‐Pressure Torsion Deformation of Ni and NiTicitations
- 2021Effect of high pressure torsion on crystallization and magnetic properties of Fe$_{73.9}$Cu$_{1}$Nb$_{3}$Si$_{15.5}$B$_{6.6}$citations
- 2021Morphology and properties of foamed high crystallinity PEEK prepared by high temperature thermally induced phase separationcitations
- 2021Transition metal-based high entropy alloy microfiber electrodescitations
- 2021Deformation-Mode-Sensitive Behavior of CuZr-Based Bulk Metallic Glasses Under Dynamic Loadingcitations
- 2021From elastic excitations to macroscopic plasticity in metallic glassescitations
- 2021Effect of high pressure torsion on crystallization and magnetic properties of Fe73.9Cu1Nb3Si15.5B6.6citations
- 2021Transition metal-based high entropy alloy microfiber electrodes: Corrosion behavior and hydrogen activitycitations
- 2020Room temperature recovery of cryogenically deformed aluminium alloyscitations
- 2020Mechanism of low temperature deformation in aluminium alloyscitations
- 2019Characterization of strain bursts in high density polyethylene by means of a novel nano creep testcitations
- 2017Atomic origin for rejuvenation of a Zr-based metallic glass at cryogenic temperaturecitations
- 2017Dislocation Movement Induced by Molecular Relaxations in Isotactic Polypropylenecitations
Places of action
Organizations | Location | People |
---|
article
Transition metal-based high entropy alloy microfiber electrodes
Abstract
<p>This contribution reveals ultra-high corrosion resistance of high entropy alloys (HEAs), i.e. Ti<sub>20</sub>Zr<sub>20</sub>Nb<sub>15</sub>V<sub>15</sub>Hf<sub>15</sub>Ta<sub>15</sub> of 1.85 µm yr<sup>–1</sup> in alkaline environment, adverting their use for battery/fuel cell components. Formation of several nanometers passive oxide layer confirmed by scanning transmission electron microscopy accounts for corrosion resistance which increases with TiO<sub>x</sub> content. Cathodic Tafel slope of 67 mV dec<sup>–1</sup> and large transfer coefficient of 0.82 obtained for Ti<sub>20</sub>Zr<sub>20</sub>Nb<sub>20</sub>V<sub>20</sub>Ta<sub>20</sub> suggest its use for hydrogen electrocatalysis. High amounts of hydrogen storage, 1.7 wt% in Ti<sub>25</sub>Zr<sub>25</sub>Nb<sub>15</sub>V<sub>15</sub>Ta<sub>20</sub>, were confirmed by gas-solid reactions. This HEA also has high corrosion resistance in acidic and saline environments ideal for coatings and surgical tools/implants.</p>