Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Guarin, David Fernando Martelo

  • Google
  • 1
  • 4
  • 18

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Characterising hydrogen induced cracking of alloy 625+ using correlative SEM - EDX and NanoSIMS18citations

Places of action

Chart of shared publication
Morana, R.
1 / 9 shared
Moore, Kl
1 / 21 shared
Akid, Robert
1 / 16 shared
Aboura, Y.
1 / 2 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Morana, R.
  • Moore, Kl
  • Akid, Robert
  • Aboura, Y.
OrganizationsLocationPeople

article

Characterising hydrogen induced cracking of alloy 625+ using correlative SEM - EDX and NanoSIMS

  • Morana, R.
  • Moore, Kl
  • Guarin, David Fernando Martelo
  • Akid, Robert
  • Aboura, Y.
Abstract

Hydrogen induced cracking behaviour of O&G nickel alloy 625+ (UNS N07716) was investigated. Deuterium was introduced electrochemically into samples by cathodic polarisation (3.5 wt.% NaCl.D2O) under different mechanical conditions. Subsequently, deuterium distributions were mapped using NanoSIMS. Deuterium was used as an isotopic tracer instead of hydrogen to avoid the detection of hydrogen artefacts. Complimentary image analysis using scanning electron microscopy (SEM) and low voltage energy dispersive X-ray (EDX) allowed the identification of microstructural features corresponding to deuterium enrichments. The results provided experimental evidence of enrichments at dislocation slip bands (DSB), twin boundary and grain boundary features that include σ precipitates.

Topics
  • grain
  • nickel
  • grain boundary
  • scanning electron microscopy
  • Hydrogen
  • dislocation
  • precipitate
  • Energy-dispersive X-ray spectroscopy
  • nickel alloy
  • twin boundary