People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kosari, Ali
Thermo Fisher Scientific (Netherlands)
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2022Evaluation of the formation and protectiveness of a lithium-based conversion layer using electrochemical noisecitations
- 2022Localised aqueous corrosion of electroless nickel immersion gold-coated coppercitations
- 2022Microstructure, mechanical, and corrosion properties of Zr1-xCrxBy diboride alloy thin films grown by hybrid high power impulse/DC magnetron co-sputteringcitations
- 2021Editors' Choice - Dealloying-Driven Cerium Precipitation on Intermetallic Particles in Aerospace Aluminium Alloyscitations
- 2021Nanoscopic and in-situ cross-sectional observations of Li-based conversion coating formation using liquid-phase TEMcitations
- 2021Laterally-resolved formation mechanism of a lithium-based conversion layer at the matrix and intermetallic particles in aerospace aluminium alloyscitations
- 2020Dealloying-driven local corrosion by intermetallic constituent particles and dispersoids in aerospace aluminium alloyscitations
- 2020In-situ nanoscopic observations of dealloying-driven local corrosion from surface initiation to in-depth propagationcitations
- 2020Cross-sectional characterization of the conversion layer formed on AA2024-T3 by a lithium-leaching coatingcitations
- 2020Corrosion resistance of hot-dip galvanized steel in simulated soil solutioncitations
- 2020Effect of simulated brazing on the microstructure and corrosion behavior of twin roll cast AA3003citations
- 2019Characterization of the passive layer on ferrite and austenite phases of super duplex stainless steelcitations
- 2019Effect of brazing on the microstructure and corrosion behaviour of a twin roll cast Al-Mn-Fe-Si alloy system
- 2018Enhanced corrosion protection of mild steel by the synergetic effect of zinc aluminum polyphosphate and 2-mercaptobenzimidazole inhibitors incorporated in epoxy-polyamide coatingscitations
Places of action
Organizations | Location | People |
---|
article
In-situ nanoscopic observations of dealloying-driven local corrosion from surface initiation to in-depth propagation
Abstract
<p>Dealloying is involved in materials science responsible for fabrication of nanoscale structures beneficially but for corrosion degradations detrimentally. Detailed understanding related to the latter is critical for designing corrosion-resistance alloys and dedicated inhibition systems. Thus, direct nanoscopic observations of nano-structural and compositional evolutions during the process are essential. Here using liquid phase-transmission electron microscopy (LP-TEM), for the first time, we show dynamic evolution of intricate site-specific local corrosion linked to intermetallic particles (IMPs) in aerospace aluminium alloys. To thoroughly probe degradation events, oxidation direction is controlled by purposefully masking thin specimens, allowing for observing top-view surface initiation to cross-sectional depth propagation of local degradations. Real-time capturing validated and supported by post-mortem examinations shows a dealloying-driven process that initiates at IMPs and penetrates into the depth of the alloy, establishing macroscopic corrosion pits. Besides, controversial mechanisms of noble-metal redistribution are finally elucidated.</p>