Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Van Den Steen, Nils

  • Google
  • 1
  • 11
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Numerical interpretation to differentiate hydrogen trapping effects in iron alloys in the Devanathan-Stachurski permeation cell13citations

Places of action

Chart of shared publication
Verbeken, Kim
1 / 154 shared
Mamme, Mesfin Haile
1 / 6 shared
Ingelgem, Yves Van
1 / 4 shared
Deconinck, Johan
1 / 3 shared
Van Laethem, Dries
1 / 4 shared
Terryn, Herman
1 / 124 shared
Eeckhout, Emilie Van Den
1 / 1 shared
Ozdirik, Berk
1 / 3 shared
Depover, Tom
1 / 82 shared
Vecchi, Lorenzo
1 / 2 shared
Pecko, Darja
1 / 1 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Verbeken, Kim
  • Mamme, Mesfin Haile
  • Ingelgem, Yves Van
  • Deconinck, Johan
  • Van Laethem, Dries
  • Terryn, Herman
  • Eeckhout, Emilie Van Den
  • Ozdirik, Berk
  • Depover, Tom
  • Vecchi, Lorenzo
  • Pecko, Darja
OrganizationsLocationPeople

article

Numerical interpretation to differentiate hydrogen trapping effects in iron alloys in the Devanathan-Stachurski permeation cell

  • Verbeken, Kim
  • Mamme, Mesfin Haile
  • Ingelgem, Yves Van
  • Deconinck, Johan
  • Van Den Steen, Nils
  • Van Laethem, Dries
  • Terryn, Herman
  • Eeckhout, Emilie Van Den
  • Ozdirik, Berk
  • Depover, Tom
  • Vecchi, Lorenzo
  • Pecko, Darja
Abstract

<p>The Devanathan-Stachurski-cell is the most commonly used electrochemical technique for the investigation of the hydrogen trapping properties of a material. In this set-up, a flux of hydrogen atoms diffuses through a metal membrane under study. The atoms are subjected to the heterogeneities naturally present in the lattice of the metal, acting as traps. This matter influences the diffusion of hydrogen, which is strongly microstructure related. In this paper, we apply a numerical model to different iron-alloys to determine the hydrogen trapping parameters characterizing the materials. We highlight the complexity of the hydrogen trapping mechanism which needs to be further investigated.</p>

Topics
  • impedance spectroscopy
  • microstructure
  • Hydrogen
  • iron
  • iron alloy