People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gley, Renaud
Université de Lorraine
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2018Abiotically or microbially mediated transformations of magnetite by sulphide species: The unforeseen role of nitrate-reducing bacteriacitations
- 2018Long term behavior of iron and zinc in steelmaking wastes
- 2017Iron mineralogy as a fingerprint of former steelmaking activities in river sedimentscitations
Places of action
Organizations | Location | People |
---|
article
Abiotically or microbially mediated transformations of magnetite by sulphide species: The unforeseen role of nitrate-reducing bacteria
Abstract
In the anoxic conditions of nuclear waste deep geological repository, the main iron corrosion products formed at the surface of the carbon steel overpacks are siderite (FeIICO3) and magnetite (FeIIFeIII2O4) that form a rather protective layer. The originality of this work is the consideration of the bacterial metabolism of nitrate-reducing bacteria (NRB), often overlooked in corrosion processes. Klebsiella mobilis was used as a model of NRB and incubated with ferrous carbonates/magnetite corrosion bilayers under anoxic conditions. As a consequence of a combination of biotic and abiotic processes magnetite was reduced to mackinawite (FeIIS) and subsequently transformed to greigite (FeIIFeIII2S4).