Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jalili, Mohammad Mehdi

  • Google
  • 1
  • 2
  • 82

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2011Influence of various surface treated silica nanoparticles on the electrochemical properties of SiO <SUB>2</SUB>/polyurethane nanocoatings82citations

Places of action

Chart of shared publication
Moradian, Siamak
1 / 2 shared
Dolatzadeh, Fatemeh
1 / 1 shared
Chart of publication period
2011

Co-Authors (by relevance)

  • Moradian, Siamak
  • Dolatzadeh, Fatemeh
OrganizationsLocationPeople

article

Influence of various surface treated silica nanoparticles on the electrochemical properties of SiO <SUB>2</SUB>/polyurethane nanocoatings

  • Jalili, Mohammad Mehdi
  • Moradian, Siamak
  • Dolatzadeh, Fatemeh
Abstract

Various organosilane-treated SiO <SUB>2</SUB> nanoparticles were dispersed in a 2-pack polyurethane coating. The influence of surface modification and silica content on the electrochemical behaviour of the resultant nanocoatings was investigated. Electrochemical impedance spectroscopy (EIS) and open circuit potential (OCP) variations were examined. The surface chemistry of nanoparticles and its effect on the resultant nanocoating morphology were also studied utilising FTIR, and TEM analyses. The results reveal that the presence of more hydrophobic groups and longer-lengthed hydrophobic chains on the surface of nanoparticles, greatly improves the interfacial interactions at the polymer/filler interfaces resulting in a better corrosion performance....

Topics
  • nanoparticle
  • surface
  • polymer
  • corrosion
  • transmission electron microscopy
  • electrochemical-induced impedance spectroscopy