Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Matos, Am

  • Google
  • 3
  • 7
  • 44

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Comparison of outlier detection approaches for compressive strength of cement-based mortars2citations
  • 2024Eco-efficient high performance white concrete incorporating waste glass powder12citations
  • 2018Design of self-compacting high-performance concrete: Study of mortar phase30citations

Places of action

Chart of shared publication
Cangussu, N.
1 / 1 shared
Aslani, F.
1 / 1 shared
Maia, L.
2 / 3 shared
Milheiro-Oliveira, Paula
2 / 3 shared
Pimentel, M.
1 / 4 shared
Nunes, S.
1 / 9 shared
Milheiro Oliveira, P.
1 / 2 shared
Chart of publication period
2024
2018

Co-Authors (by relevance)

  • Cangussu, N.
  • Aslani, F.
  • Maia, L.
  • Milheiro-Oliveira, Paula
  • Pimentel, M.
  • Nunes, S.
  • Milheiro Oliveira, P.
OrganizationsLocationPeople

article

Eco-efficient high performance white concrete incorporating waste glass powder

  • Pimentel, M.
  • Matos, Am
  • Milheiro-Oliveira, Paula
Abstract

Portland cement and supplementary cementitious materials (SCM) are crucial components in the mixture design of High-Performance Concrete (HPC). In certain regions, the constrained ready market availability of SCM may limit the widespread adoption of HPC, namely when a long-term supply is envisaged. These circumstances demand research into sustainable and cost-effective HPC mix designs independent of expensive and imported SCM, such as silica fume. Using locally available SCM reduces costs and the carbon dioxide (CO2) emissions associated with HPC production, while also assigning value to abundant industrial waste or by-products, such as glass powder. This study presents a wide range of more environmentally friendly white HPC formulations suited for architectural applications. The proposed formulations incorporate significant proportions of limestone filler and waste glass powder with varying fineness, serving as substantial partial replacements for white cement. An integrated assessment of engineering properties was conducted, including flowability, electrical resistivity, mechanical strength, and ecological balance. Response surface models of the material behaviour reveal that the water-to-cement weight ratio (w/c) and the glass powder-to-cement weight ratio (GP/c) have a significant influence on both the engineering properties and the ecological footprint of HPC. Regression models were used to obtain the high-flowable HPC. Five optimal mixtures were selected featuring significant partial replacement of cement (c) by limestone filler (Lf) and glass power (GP), with Lf/c is an element of[0.38;0.78] and GP/c is an element of[0.269;0.394]. These mixtures reached cube compressive strengths ranging from 90 to 100 MPa, flexure strengths in the 13-15 MPa range, and resistivity levels between 90-180 ohm.m at 28 days.

Topics
  • impedance spectroscopy
  • surface
  • Carbon
  • resistivity
  • glass
  • glass
  • strength
  • cement