People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Salami, Babatunde Abiodun
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2024Evaluating long-term durability of nanosilica-enhanced alkali-activated concrete in sulfate environments towards sustainable concrete developmentcitations
- 2023Graphene-based concretecitations
- 2023Microencapsulated phase change materials for enhanced thermal energy storage performance in construction materialscitations
- 2023Using explainable machine learning to predict compressive strength of blended concretecitations
- 2023Implementation of nonlinear computing models and classical regression for predicting compressive strength of high-performance concretecitations
- 2023An overview of factors influencing the properties of concrete incorporating construction and demolition wastescitations
- 2023High strength concrete compressive strength prediction using an evolutionary computational intelligence algorithmcitations
- 2023Evaluating mechanical, microstructural and durability performance of seawater sea sand concrete modified with silica fumecitations
- 2022Compressive Strength Estimation of Fly Ash/Slag Based Green Concrete by Deploying Artificial Intelligence Modelscitations
- 2022Prediction Models for Estimating Compressive Strength of Concrete Made of Manufactured Sand Using Gene Expression Programming Modelcitations
- 2022Predicting Bond Strength between FRP Rebars and Concrete by Deploying Gene Expression Programming Modelcitations
- 2022Acid Resistance of Alkali-Activated Natural Pozzolan and Limestone Powder Mortarcitations
- 2022Engineered and green natural pozzolan-nano silica-based alkali-activated concretecitations
- 2022Prediction Models for Evaluating Resilient Modulus of Stabilized Aggregate Bases in Wet and Dry Alternating Environmentscitations
- 2022Investigating the Bond Strength of FRP Laminates with Concrete Using LIGHT GBM and SHAPASH Analysiscitations
- 2021Predicting the compressive strength of a quaternary blend concrete using Bayesian regularized neural networkcitations
- 2021Strength and acid resistance of ceramic-based self-compacting alkali-activated concretecitations
- 2021Effect of alkaline activator ratio on the compressive strength response of POFA-EACC mortar subjected to elevated temperaturecitations
- 2021Assessment of acid resistance of natural pozzolan-based alkali-activated concretecitations
- 2020Ensemble machine learning model for corrosion initiation time estimation of embedded steel reinforced self-compacting concretecitations
- 2019Influence of composition and concentration of alkaline activator on the properties of natural-pozzolan based green concretecitations
- 2017POFA-engineered alkali-activated cementitious composite performance in acid environmentcitations
- 2016Impact of added water and superplasticizer on early compressive strength of selected mixtures of palm oil fuel ash-based engineered geopolymer compositescitations
- 2016Durability performance of Palm Oil Fuel Ash-based Engineered Alkaline-activated Cementitious Composite (POFA-EACC) mortar in sulfate environmentcitations
- 2014Mechanical properties and durability characteristics of SCC incorporating crushed limestone powdercitations
Places of action
Organizations | Location | People |
---|
article
Microencapsulated phase change materials for enhanced thermal energy storage performance in construction materials
Abstract
<p>The potential of phase change materials (PCM) as a thermal energy storage medium in buildings has been widely discussed. However, the possible leakage of melted PCM into construction material matrix could have deleterious effects on some of the intrinsic properties of these materials. To prevent this, PCM is microencapsulated in micron size shells to form microencapsulated phase change materials (MPCM). Numerous studies in the literature, including reviews, have shown that MPCM can enhance the thermal performance of construction materials and reduce operational carbon emissions associated with frequent heating and cooling of buildings. However, there is limited information on the effects of the shell material encapsulating the PCM on the thermal performance of PCM as well as its effect on the inherent properties of cementitious composites and gypsum boards. This information is extremely useful for better understanding of how the known properties of construction material will be affected by the incorporation of MPCM into its matrix. In this study, we critically analyzed how MPCM affects the fresh and hardened properties of construction materials. More also, general overview of PCM, microcapsules, production process of MPCM, and various thermal enhancement methods for MPCM were also rigorously discussed and evaluated. The findings from this study show that biobased PCM can be an environmentally friendly alternative replacement for paraffins and MPCM can improve thermal performance of construction materials. The low-cost advantage of inorganic PCM over organic PCM makes it a potential candidate for economical thermal energy storage solutions. Furthermore, MPCM typically lowers the mechanical properties of building materials, with a considerable loss reported in MPCM with organic shells as opposed to inorganic microcapsules. The workability of cementitious composite decreases with increasing MPCM content, and the shell material and morphology are significant contributing factors. The highlighted knowledge gaps for future research to support MPCM scalability and large-scale applications were critically reviewed. The findings from this review provide invaluable insights for researchers, engineers, and key stakeholders in the construction industry on the recent developments and huge potential of MPCM for building thermal management.</p>