People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nunes, Sandra
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2023Hardening characterisation of a non-proprietary and more eco-friendly UHPCcitations
- 2023Hardening characterisation of a non-proprietary and more eco-friendly UHPCcitations
- 2022Multi-level study on UHPFRC incorporating ECatcitations
- 2021Chloride Ion Penetration into Cracked UHPFRC During Wetting-drying Cyclescitations
- 2021Durability of an UHPC containing spent equilibrium catalystcitations
- 2020Quaternary blends of portland cement, metakaolin, biomass ash and granite powder for production of self-compacting concretecitations
- 2019Spent equilibrium catalyst as internal curing agent in UHPFRCcitations
- 2019Spent equilibrium catalyst as internal curing agent in UHPFRCcitations
- 2018Durability of fibre reinforced cementitious composites
- 2018Alkali-activated cement using slags and fly ash
- 2014Linking fresh and durability properties of paste to SCC mortarcitations
- 2009Combined effect of two sustainable technologies: Self-compacting concrete (SCC) and controlled permeability formwork (CPF)citations
Places of action
Organizations | Location | People |
---|
article
Hardening characterisation of a non-proprietary and more eco-friendly UHPC
Abstract
The current work provides an integrated analysis of autogenous shrinkage, isothermal calorimetry, and modulus of elasticity measurement through ambient response method (EMM-ARM), to characterise the hardening behaviour of a non-proprietary and more eco-friendly ultra-high performance fibre reinforced cementitious composite (UHPFRC). Isothermal calorimetry revealed that induction period ends at 3 h, and the rapid evolution of hydration heat occurs up to 9 h. Then, the hydration reaction still undergoes but at a very slow rate. The autogenous shrinkage exhibited a strong increase, particularly in the first 6 h, after which a dramatic reduction in the slope of the curves occurred, corroborating with the heat of hydration measurements. The modulus of elasticity evolution pattern revealed a typical cementitious material S-shaped curve, with a strong evolution in the first 8 h and reached 37 GPa at 7 days. As the current study perceives, UHPC/UHPFRC-3 % MOE evolution mainly occurs at very early ages. Thus, using EMM-ARM method for evaluating stiffness-related properties since casting age of UHPC/UHPFRC is of utmost importance to take advantage of the remarkable properties of such advanced material with no waste of time and resources. Furthermore, the UHPFRC developed with a lower amount of cement and silica fume decreases the heat of hydration, shrinkage, and reduced costs and ecological footprint without significantly impairing the MOE, compared to other non-proprietary blended UHPC/UHPFRC mixtures. ; Concrete Structures