People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Alderete, Natalia
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2023Influencing factors to the capillary water uptake of (un)cracked cementitious materialscitations
- 2022Report of RILEM TC 281-CCC: outcomes of a round robin on the resistance to accelerated carbonation of Portland, Portland-fly ash and blast-furnace blended cementscitations
- 2022Report of RILEM TC 281-CCC: outcomes of a round robin on the resistance to accelerated carbonation of Portland, Portland-fly ash and blast-furnace blended cementscitations
- 2022Report of RILEM TC 281-CCCcitations
- 2022Relationship between sorptivity coefficients of concrete as calculated from the evolution of water uptake versus t0.5 or t0.25citations
- 2022Capillary imbibition in cementitious materials : effect of salts and exposure conditioncitations
- 2022Influence of 3D printed vascular networks in self-healing cementitious materials on water absorption studied via neutron imaging
- 2022Report of RILEM TC 267-TRM : improvement and robustness study of lime mortar strength test for assessing reactivity of SCMscitations
- 2022Report of RILEM TC 267—TRM: Improvement and robustness study of lime mortar strength test for assessing reactivity of SCMscitations
- 2021A correlation between sorptivity coefficients of concrete as calculated from relationships of water uptake with t0,5 or t0,25citations
- 2021Processed municipal solid waste incineration ashes as sustainable binder for concrete productscitations
- 2021Correction to: Understanding the carbonation of concrete with supplementary cementitious materials: a critical review by RILEM TC 281-CCCcitations
- 2020Understanding the carbonation of concrete with supplementary cementitious materials: a critical review by RILEM TC 281-CCCcitations
- 2020Understanding the carbonation of concrete with supplementary cementitious materials: a critical review by RILEM TC 281-CCCcitations
- 2020Understanding the carbonation of concrete with supplementary cementitious materials: a critical review by RILEM TC 281-CCCcitations
- 2020Understanding the carbonation of concrete with supplementary cementitious materials: a critical review by RILEM TC 281-CCCcitations
- 2020Understanding the carbonation of concrete with supplementary cementitious materialscitations
- 2018Lucas-Washburn vs Richards equation for the modelling of water absorption in cementitious materials
- 2018Poly(methyl methacrylate) capsules as an alternative to the ‘’proof-of-concept’’ glass capsules used in self-healing concrete
- 2018Poly(methyl methacrylate) capsules as an alternative to the ‘’proof-of-concept’’ glass capsules used in self-healing concretecitations
- 2018Isothermal water vapour permeability of concrete with different supplementary cementitious materials
- 2018Pore structure of mortars containing limestone powder and natural pozzolan assessed through mercury intrusion porosimetry and dynamic vapour sorption
Places of action
Organizations | Location | People |
---|
article
Relationship between sorptivity coefficients of concrete as calculated from the evolution of water uptake versus t0.5 or t0.25
Abstract
Sorptivity is a transport index to address the durability performance of concrete. Cementitious materials generally demonstrate anomalous capillary absorption (or imbibition) reflected by a non-linear evolution with t(0.5). A more accurate description of the transport process and a best fitting with experimental results are achieved with the novel approach based on the hygroscopic nature of concrete considering a linear progression with t(0.25). To take profit of past and present literature referring to the traditional approach, comparisons are to be made possible with an appropriate correlation between the coefficients obtained from both approaches (traditional and new). This paper presents such correlation between sorptivity coefficients of concrete as calculated from relationships of water uptake with t(0.5) and t(0.25). The comparison considers both the mathematical correspondence and the fitting to data produced in 6 different laboratories. An excellent relationship independent of the mix features is presented, with special consideration of the testing time.