Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Momoh, Emmanuel Owoichoechi

  • Google
  • 4
  • 4
  • 33

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2022Enhancing the behaviour of broom-strands reinforced concrete using hose-clamps3citations
  • 2022Behaviour of clamp-enhanced palm tendons reinforced concrete9citations
  • 2021Bond Behaviour of Oil Palm Broom Fibres in Concrete for Eco-friendly Construction10citations
  • 2020Physico-mechanical behaviour of Oil Palm Broom Fibres (OPBF) as eco-friendly building material11citations

Places of action

Chart of shared publication
Menshykov, Oleksandr
3 / 12 shared
Osofero, Adelaja
4 / 7 shared
Hamzah, Fazlena
1 / 1 shared
Martinez-Felipe, Alfonso
1 / 11 shared
Chart of publication period
2022
2021
2020

Co-Authors (by relevance)

  • Menshykov, Oleksandr
  • Osofero, Adelaja
  • Hamzah, Fazlena
  • Martinez-Felipe, Alfonso
OrganizationsLocationPeople

article

Behaviour of clamp-enhanced palm tendons reinforced concrete

  • Momoh, Emmanuel Owoichoechi
  • Menshykov, Oleksandr
  • Osofero, Adelaja
Abstract

Recent studies on affordability and sustainability of building materials have shown that broom fibres derived from the leaflets of oil palm tree have impressive tensile strength but poor bond strength with concrete. Although<br/>bonding has been reported to be improved when the fibres are combined in the form of tendons, the bond-slip failure between the tendons and concrete still compromises composite performance. This study, therefore, investigates the use of hose clamps in increasing slip resistance between oil palm broom fibres (OPBF) tendons and concrete matrix. A total of 64 concrete samples comprising of 46 beams (100x100x500 mm) reinforced with varying areas of OPBF tendons and 18 bond pull – out samples were prepared. The tendon reinforcements were<br/>fitted with hose clamps to improve the bond strength between the concrete and the reinforcement. Spacing between hose clamps was chosen as 45 mm and 85 mm. The flexural strength of the beams was tested under 4-point bending at 28, 56 and 112 days. Test results show improvement in the flexural capacity of the beams as a result of increased slip resistance induced by the hose clamps. Finite element modelling of the behaviour of the OPBF-tendon reinforced concrete was carried out and recommendations were made after ensuring that the ultimate and serviceability limit states are satisfied

Topics
  • strength
  • composite
  • flexural strength
  • tensile strength