Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Baduge, K. S. Kristombu

  • Google
  • 1
  • 4
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Multiscale modelling framework for elasticity of ultra high strength concrete using nano/microscale characterization and finite element representative volume element analysis14citations

Places of action

Chart of shared publication
Chandrathilaka, E. R. K.
1 / 2 shared
Thilakarathna, P. S. M.
1 / 1 shared
Lee, H.
1 / 16 shared
Mendis, P.
1 / 4 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Chandrathilaka, E. R. K.
  • Thilakarathna, P. S. M.
  • Lee, H.
  • Mendis, P.
OrganizationsLocationPeople

article

Multiscale modelling framework for elasticity of ultra high strength concrete using nano/microscale characterization and finite element representative volume element analysis

  • Chandrathilaka, E. R. K.
  • Baduge, K. S. Kristombu
  • Thilakarathna, P. S. M.
  • Lee, H.
  • Mendis, P.
Abstract

<p>Ultra-High Strength Concrete (UHSC) (greater than 100 MPa) is a mechanically superior material compared with the Normal Strength Concrete (NSC) due to its inherent performance characteristics. Improved modulus of elasticity is one of the key target characteristics in the development of UHSC. Macroscopic response of UHSC is a result of a multitude of phases in different spatial length scales such as mesoscale, microscale, nanoscale etc. and investigating these spatial scales can yield a better understanding about contribution of each heterogenous phases to the macroscopic behaviour of UHSC. In this paper, a new multiscale modelling method including procedures to obtain micro/nano scale properties is proposed to predict the macroscopic elastic modulus using nanoindentation experiments, hydration simulations, Scanning Electron Microscopy (SEM) and Finite Element Representative Volume Element (FE-RVE) modelling. <br/></p><p>Characterization of nanomechanical properties of the cementitious composite was carried out using nanoindentation, microstructural characterization was performed using scanning electron microscopy, and hydration simulation of the cementitious paste was carried out using Virtual Cement and Concrete Testing Laboratory (VCCTL) software. A five-level multiscale framework is proposed for UHSC and results from these experimental testing and simulations were used as inputs in the proposed framework. <br/></p><p>A novel algorithm which can model any volume fraction of different phases was developed to generate geometries for RVEs to be used in FE-RVE simulations. Upscaling of elastic modulus using FE-RVE was found to be very accurate, and this method can generate detailed variation of microfields inside the RVE. A parametric study was carried out on how varying inhomogeneities in the RVE, boundary conditions, and the shape of the inhomogeneities would affect the homogenized elastic modulus. <br/></p><p>Continuum micromechanics models such as Mori-Tanaka method and Self Consistent Scheme were used for the analytical homogenization at each scale for comparison with FE-RVE method. The results of the proposed FE-RVE analysis, the Mean Field Homogenization (MFH) method, and experiment were compared and found to be a very good fit.</p>

Topics
  • impedance spectroscopy
  • phase
  • scanning electron microscopy
  • experiment
  • simulation
  • strength
  • composite
  • cement
  • nanoindentation
  • elasticity
  • homogenization