Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hamley-Bennett, Charlotte

  • Google
  • 2
  • 11
  • 33

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Assessing the potential application of bacteria-based self-healing cementitious materials for enhancing durability of wastewater treatment infrastructure5citations
  • 2022Air-entraining admixtures as a protection method for bacterial spores in self-healing cementitious composites28citations

Places of action

Chart of shared publication
Justo-Reinoso, Ismael
2 / 9 shared
Ofiteru, Irina Dana
1 / 1 shared
Masoero, Enrico
1 / 3 shared
Akono, Ange Therese
1 / 1 shared
Gebhard, Susanne
2 / 9 shared
Paine, Kevin A.
2 / 49 shared
Luli, Saimir
1 / 1 shared
Bagga, Manpreet
1 / 1 shared
Merces, George
1 / 1 shared
Reeksting, Bianca
1 / 8 shared
Heath, Andrew
1 / 27 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Justo-Reinoso, Ismael
  • Ofiteru, Irina Dana
  • Masoero, Enrico
  • Akono, Ange Therese
  • Gebhard, Susanne
  • Paine, Kevin A.
  • Luli, Saimir
  • Bagga, Manpreet
  • Merces, George
  • Reeksting, Bianca
  • Heath, Andrew
OrganizationsLocationPeople

article

Air-entraining admixtures as a protection method for bacterial spores in self-healing cementitious composites

  • Justo-Reinoso, Ismael
  • Reeksting, Bianca
  • Heath, Andrew
  • Hamley-Bennett, Charlotte
  • Gebhard, Susanne
  • Paine, Kevin A.
Abstract

<p>Costs associated with the encapsulation process of bacterial spores continue to be a limiting factor for the commercialisation of self-healing cementitious materials. The feasibility of using air-entraining admixtures (AEAs) as an economical and straightforward encapsulation method for bacterial spores was evaluated to heal cracks (∼0.50 mm) that were formed at an early (28 days) or later age (9 months). Three AEAs, commonly used in concrete industry, were compared to a successfully proven protection method (i.e., via aerated concrete granules (ACGs)). In this regard, only one of the three AEAs investigated improved the healing performance when compared to an equivalent mix using bacterial spores encapsulated in ACGs. Healing ratios obtained with this successful AEA were 59.6% and 46.2% higher than the results observed for the ACGs-containing mix when the cracking age was 28 days and 9 months, respectively. Moreover, water penetration resistance was increased by 18.1% or presented very similar values (∼84%) after 56 days of healing for early or later-formed cracks, respectively. Moreover, a simple cost analysis was conducted to confirm the significant economic benefits of using AEAs to protect directly added bacterial spores. In this regard, the cost of using AEAs is about 13 times lower than for ACGs. Therefore, this study provides for the first time, evidence of the feasibility of using AEAs to protect bacterial spores, opening the doors to the development of bespoke AEAs to design cost-efficient self-healing cementitious materials.</p>

Topics
  • impedance spectroscopy
  • crack
  • composite