Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Masia, Mark J.

  • Google
  • 1
  • 2
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Monte-Carlo laboratory testing of unreinforced masonry veneer wall system under out-of-plane loading14citations

Places of action

Chart of shared publication
Muhit, Imrose Bin
1 / 1 shared
Stewart, Mark G.
1 / 7 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Muhit, Imrose Bin
  • Stewart, Mark G.
OrganizationsLocationPeople

article

Monte-Carlo laboratory testing of unreinforced masonry veneer wall system under out-of-plane loading

  • Masia, Mark J.
  • Muhit, Imrose Bin
  • Stewart, Mark G.
Abstract

<p>This paper presents the results of a probabilistic experimental study into the behaviour of full-scale unreinforced masonry (URM) veneer walls with flexible backup subjected to out-of-plane loading. The actual safety and reliability of the contemporary Australian URM structures are unknown due to the absence of information regarding the probabilistic behaviour of the whole veneer wall system and material characterisation of the wall constituent materials. The study focused on masonry typologies representative of modern URM buildings in the Australian context. In this study, 18 full-scale URM veneer wall systems with theoretically identical geometries and properties were tested under inward and outward out-of-plane loading. For each loading type, one specimen was tested under semi-cyclic loading to check whether the monotonic loading can capture the overall behaviour of the cyclic response. For each mortar batch mixed, bond wrench testing was conducted at the same age as the test for the associated wall constructed using that mix. Batch to batch variabilities were statistically analysed, and probability distributions for flexural tensile strength were established. Lognormal distributions with aggregated means of 0.40 MPa and 0.42 MPa for inward and outward loading, respectively, were estimated for flexural tensile strengths. After the wall tests, all timber studs used to build the veneer walls were tested to evaluate the probabilistic characterisation of timber stiffness. This probabilistic information is essential for a stochastic finite element analysis (FEA) to conduct the reliability analysis. From the wall tests, veneer wall system behaviour was observed and measured until the collapse or 20% post-peak drop of the peak load. Outward loaded specimens exhibited higher variabilities for masonry cracking and system peak load compared to inward loading due to variabilities from materials, testing arrangements and failure mechanism. The true coefficient of variations of system peak loads were calculated as 0.10 and 0.19 for inward and outward loadings, respectively, considering the effect of testing variability.</p>

Topics
  • impedance spectroscopy
  • strength
  • tensile strength
  • finite element analysis