People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Haha, Mohsen Ben
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Hydration of Composite Cements Containing Novel SCMscitations
- 2022Report of RILEM TC 267-TRM phase 3: validation of the R3 reactivity test across a wide range of materialscitations
- 2022Hydration and mixture design of calcined clay blended cements: review by the RILEM TC 282-CCL
- 2022Report of RILEM TC 267-TRM phase 2: optimization and testing of the robustness of the R3 reactivity tests for supplementary cementitious materialscitations
- 2022Report of RILEM TC 267—TRM: Improvement and robustness study of lime mortar strength test for assessing reactivity of SCMscitations
- 2021Combined influence of carbonation and leaching on freeze-thaw resistance of limestone ternary cement concretecitations
- 2021Clay calcination technology: state-of-the-art review by the RILEM TC 282-CCL
- 2021CO2 mineralization of demolished concrete wastes into a supplementary cementitious material – a new CCU approach for the cement industrycitations
Places of action
Organizations | Location | People |
---|
article
Combined influence of carbonation and leaching on freeze-thaw resistance of limestone ternary cement concrete
Abstract
Performance of OPC and composite cements including limestone ternary blended concretes and pastes exposed to natural carbonation, leaching, and freeze-thaw (FT) cycles and their coupling were investigated. The combined regime is analogous to the Capillary suction, internal damage and Freeze-thaw (CIF) test. The freeze-thaw test results showed that composite cement concretes are more susceptible to surface scaling and internal damage. Microanalysis of complementary cement pastes revealed partial carbonation after equilibration at 65% RH. Decalcification due to leaching accompanied capillary suction, profound in the partially carbonated ternary cement pastes such that portlandite was depleted from the surface before the FT cycles commenced. Successive cycles increased porosity; heterogeneity and coarsening of the pore structures were drastic when carbonation and leaching preceded FT, modifying the C-S-H morphology and composition. Curtailing carbonation and leaching reduced surface scaling and internal damage to comparable levels as OPC of the same strength class. These findings imply that changes in porosity and phase assemblage in composite cements caused by carbonation and leaching contributed to their FT susceptibility.