People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Saliba, Jacqueline
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2023Mechanical characterization and durability of earth blockscitations
- 2021Assessment of the reliability of concrete evaluation by multi-physical inversion of NDT measurements – A probabilistic approachcitations
- 2021Assessment of the reliability of concrete evaluation by multi-physical inversion of NDT measurements – A probabilistic approachcitations
- 2018Non Destructive Evaluation of the durability and damages of concrete in nuclear power plant
- 2018Multi-Scale Methods for the Analysis of Creep-Damage Coupling in Concretecitations
- 2016Experimental and numerical analysis of crack evolution in concrete through acoustic emission technique and mesoscale modellingcitations
- 2016Analysis of Crack Evolution in Concrete through Combined Acoustic Emission Monitoring and Mesoscale Modelling
- 2016Analysis of Crack Evolution in Concrete through Combined Acoustic Emission Monitoring and Mesoscale Modelling
- 2016Modeling of the quasibrittle fracture of concrete at meso-scale: Effect of classes of aggregates on global and local behaviorcitations
- 2016Modeling of the quasibrittle fracture of concrete at meso-scale: Effect of classes of aggregates on global and local behaviorcitations
- 2016A New Approach to Simulate Interface Damage in Brittle Matrix Compositescitations
- 2015Experimental analysis of crack evolution in concrete by the acoustic emission techniquecitations
- 2014Fracture examination in concrete through combined digital image correlation and acoustic emission techniquescitations
- 2014Numerical Investigation of the Size Effects on the Creep Damage Couplingcitations
- 2014Identification of damage mechanisms in concrete under high level creep by the acoustic emission techniquecitations
- 2013Fracture energy of concrete at very early ages by inverse analysis
- 2013ACOUSTIC EMISSION MONITORING AND QUANTITATIVE EVALUATION OF DAMAGE IN CONCRETE BEAMS UNDER CREEP
- 2013Multi-scales Characterization of the Early-age Creep of Concretecitations
- 2013Study of Evolution of Fracture Process Zone in Concrete by Simultaneous Application of Digital Image Correlation and Acoustic Emission
- 2013Relevance of a mesoscopic modeling for the coupling between creep and damage in concretecitations
- 2012Experimental study of creep-damage coupling in concrete by acoustic emission techniquecitations
- 2012Modelling of basic creep effect on concrete damage at a mesoscale level
- 2012Contribution of the Acoustic Emission technique in the understanding and the modelling of the coupling between creep and damage in concrete
Places of action
Organizations | Location | People |
---|
article
Assessment of the reliability of concrete evaluation by multi-physical inversion of NDT measurements – A probabilistic approach
Abstract
The evaluation of the spatial variability of concrete properties is an important issue for a better diagnosis of reinforced concrete structures. The combination between destructive techniques and nondestructive techniques (NDT) is a common practice to establish relationships between concrete properties and NDT measurements. Concrete properties can then be estimated at each test location using the corresponding NDT values on the basis of the calibration and inversion of these relationships. However, NDT measurements include many sources of uncertainties that can lead to biased or even inaccurate estimation. Thus, the improvement of the reliability of this estimation requires to specify and control the principal influencing factors on these uncertainties. The main objective of this paper is to propose a calibration methodology of conversion models and to study the reliability of concrete properties assessment considering the effect of the number of measurements, the uncertainty of NDT measurements and the combination of NDT techniques. Three conversion models linking the ultrasonic pulse velocity, the electrical resistivity, and the dielectric permittivity to two physical concrete properties, the porosity and saturation degree, are considered. The results show that the inversion of the proposed analytical models enables an accurate evaluation of concrete properties. In addition, it has been shown that there is a minimal number of measurements needed for an efficient non-destructive evaluation of concrete properties considering their variabilities.