People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Brouwers, Jos
Eindhoven University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Sustainable ambient pressure-dried silica aerogel from waste glasscitations
- 2024Improving the early reactivity of activated basic oxygen furnace slagcitations
- 2022Thermal and fire resistance of Class F fly ash based geopolymers – a reviewcitations
- 2021One-pot synthesis of monolithic silica-cellulose aerogel applying a sustainable sodium silicate precursorcitations
- 2020Effects of hydrophobic expanded silicate aggregates on properties of structural lightweight aggregate concretecitations
- 2019Characterization and performance of high volume recycled waste glass and ground granulated blast furnace slag or fly ash blended mortarscitations
- 2019Ionic interaction and liquid absorption by wood in lignocellulose inorganic mineral binder compositescitations
- 2018Effect of pore structure on the performance of photocatalytic lightweight lime-based finishing mortarcitations
- 2018Upgrading and evaluation of waste paper sludge ash in eco-lightweight cement compositescitations
- 2018On the effect of the physical structure of cement on shrinkage of cementitious materialscitations
- 2017Quantification of concrete aggregate liberation through abrasion comminution
- 2017Assessing the effect of CaSO4 content on the hydration kinetics, microstructure and mechanical properties of cements containing sugarscitations
- 2016Design and performance evaluation of ultra-lightweight geopolymer concretecitations
- 2015The effect of glucose on the hydration kinetics of ordinary portland cement
- 2014Synthesis, characterization and photocatalytic activity of WO3/TiO2 for NO removal under UV and visible light irradiationcitations
- 2014Precipitation synthesis of WO3 for NOx removal using PEG as templatecitations
- 2014Wood-wool cement board : potential and challenges
- 2013Photocatalytic removal of nitric oxide by Bi2Mo3O12 prepared by co-precipitation methodcitations
Places of action
Organizations | Location | People |
---|
article
One-pot synthesis of monolithic silica-cellulose aerogel applying a sustainable sodium silicate precursor
Abstract
<p>Cellulose aerogel is an advanced thermal insulating biomaterial. However, the application of cellulose aerogel in thermal insulation still faces critical problems, for instance, the relatively low strength and large pore size without Knudsen effect. In this study, a silica areogel made from olivine silica rather than traditional tetraethoxysilane or water glass is employed to synthesize silica-cellulose composite aerogel applying a facile one-pot synthesis method. The silica aerogel nanoparticles are formed inside the cellulose nanofibrils by using sol-gel method and freeze-drying. The developed silica-cellulose composite aerogel has an obviosuly lowered thermal conductivity and is significantly stronger compared to plain cellulose aerogel. The microstructure of silica-cellulose aerogel was characterized by SEM, TGA, FTIR and N<sub>2</sub> physisorption tests. The developed silica-cellulose aerogel had a bulk density of 0.055 ~ 0.06 g/cm<sup>3</sup>, compressive strength of 95.4 kPa, surface area of 900 m<sup>2</sup>/g and thermal conductivity of 0.023 W/(m·K). The thermal stability of the composite aerogel was also improved and showed the higher cellulose decomposition temperature. Furthermore, the composite aerogel is modified by trimethylchlorosilane making it hydrophobic, reaching a water contact angle of ~ 140°, enhancing its volumetric and thermo-phycial stability when applied in a humid environment. In conclusion, the resulting green silica-cellulose aerogel is a promising candidate for utilization as a high performance insulation material.</p>