Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Shaikh, Faiz Uddin Ahmed

  • Google
  • 2
  • 5
  • 120

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Nano- and micro-scale characterisation of interfacial transition zone (ITZ) of high volume slag and slag-fly ash blended concretes containing nano SiO2 and nano CaCO394citations
  • 2020The effect of specimen geometry on the compressive and tensile strengths of self-compacting rubberised concrete containing waste rubber granules26citations

Places of action

Chart of shared publication
Aslani, Farhad
2 / 71 shared
Hosan, Anwar
1 / 1 shared
Sarker, Prabir
1 / 1 shared
Hamidi, Fatemeh
1 / 6 shared
Valizadeh, Afsaneh
1 / 5 shared
Chart of publication period
2021
2020

Co-Authors (by relevance)

  • Aslani, Farhad
  • Hosan, Anwar
  • Sarker, Prabir
  • Hamidi, Fatemeh
  • Valizadeh, Afsaneh
OrganizationsLocationPeople

article

Nano- and micro-scale characterisation of interfacial transition zone (ITZ) of high volume slag and slag-fly ash blended concretes containing nano SiO2 and nano CaCO3

  • Shaikh, Faiz Uddin Ahmed
  • Aslani, Farhad
  • Hosan, Anwar
  • Sarker, Prabir
Abstract

<p>There is a strong demand of higher volume replacement of ordinary Portland cement (OPC) in concrete and cementitious composites by supplementary cementitious materials such as blast furnace slag (BFS) and fly ash (FA) to reduce their carbon footprint. This paper presents the effect of addition of nano calcium carbonate (NC) and nano silica (NS) on improving the interfacial transition zone (ITZ) of high volume slag (HVS) and high volume slag-fly ash (HVS-FA) blended concretes. Nanoindentation, scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) techniques were used to characterise the nano- and microstructure of the ITZ area between aggregates and matrix. Results show that the addition of NC and NS improved the modulus and hardness of hydration products in the ITZ area of matrix of HVS and HVS-FA concretes. The thickness of ITZ is also reduced in those concretes due to addition of NS and NC. SEM and EDS analysis also confirm the above observation where dense microstructure with less voids and micro cracks and higher peaks of Ca, Si and Al were observed. The observed improvement of 28 days compressive strengths of the HVS and HVS-FA concretes due to addition of NC and NS also correlated well with the improvement of microstructures of ITZ area.</p>

Topics
  • impedance spectroscopy
  • microstructure
  • Carbon
  • scanning electron microscopy
  • laser emission spectroscopy
  • crack
  • strength
  • composite
  • cement
  • hardness
  • nanoindentation
  • Energy-dispersive X-ray spectroscopy
  • void
  • Calcium
  • interfacial