People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Akbar, Arslan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024A coupled 3D thermo-mechanical peridynamic model for cracking analysis of homogeneous and heterogeneous materialscitations
- 2023Potential of Pyrogenic Nanosilica to Enhance the Service Life of Concretecitations
- 2023Performance of silica fume slurry treated recycled aggregate concrete reinforced with carbon fiberscitations
- 2022Future developments and challenges of nano-tailored cementitious composites
- 2022Influence of Elevated Temperatures on the Mechanical Performance of Sustainable-Fiber-Reinforced Recycled Aggregate Concretecitations
- 2021Multicriteria performance evaluation of fiber-reinforced cement compositescitations
- 2021Geopolymer concrete as sustainable materialcitations
- 2021Predictive modeling for sustainable high-performance concrete from industrial wastescitations
- 2021Exploring mechanical performance of hybrid MWCNT and GNMP reinforced cementitious compositescitations
- 2021Microstructural changes and mechanical performance of cement composites reinforced with recycled carbon fiberscitations
- 2021Sugarcane bagasse ash-based engineered geopolymer mortar incorporating propylene fiberscitations
- 2020Assessing recycling potential of carbon fiber reinforced plastic waste in production of eco-efficient cement-based materialscitations
- 2020A comparative study on performance evaluation of hybrid GNPs/CNTs in conventional and self-compacting mortarcitations
- 2020New Prediction Model for the Ultimate Axial Capacity of Concrete-Filled Steel Tubescitations
- 2020Influence of elevated temperature on the microstructure and mechanical performance of cement composites reinforced with recycled carbon fiberscitations
Places of action
Organizations | Location | People |
---|
article
Exploring mechanical performance of hybrid MWCNT and GNMP reinforced cementitious composites
Abstract
Nano-engineered cement composites using a hybrid of multiwalled carbon nanotubes (MWCNTs) and graphite nano-micro particles (GNMPs) integrates the superior mechanical performance of MWCNTs and the better dispersibility and shielding capability of GNMPs. Combinations of MWCNTs and GNMPs at total of 0.08% over cement weight were ultrasonically dispersed in aqueous solution to make the cement mortar. The results show that incorporation of graphite platelets can synergistically improve the dispersion and compatibility of MWCNTs with surrounding cementitious matrix. Furthermore, the incorporation of 2-dimenstional GNMPs provided better resistance against water absorption and external sulphate attack. We assert that by limiting the hybridization of MWCNTs and GNMPs to a ratio of 1:0.125 (C1G0.125), a cementitious composite with enhanced mechanical performance can be developed. Young's modulus, flexural strength and flexural toughness was improved by 87%, 61%, and 51% respectively. Furthermore, the findings of this study provide the new insights on the design of hybrid nano reinforced cement composites with improved mechanical properties for various applications.