Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Oliveira Costa, Juliana

  • Google
  • 2
  • 5
  • 25

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Alkali-activated binders with reclaimed asphalt aggregates as a potential base layer of pavementscitations
  • 2020Cementitious binders and reclaimed asphalt aggregates for sustainable pavement base layers25citations

Places of action

Chart of shared publication
Bezerra, Augusto Cesar S.
1 / 1 shared
Borges, Paulo H. R.
1 / 2 shared
Bergh, Wim Van Den
1 / 10 shared
Santos, Flavio A. Dos
1 / 1 shared
Blom, Johan
1 / 36 shared
Chart of publication period
2022
2020

Co-Authors (by relevance)

  • Bezerra, Augusto Cesar S.
  • Borges, Paulo H. R.
  • Bergh, Wim Van Den
  • Santos, Flavio A. Dos
  • Blom, Johan
OrganizationsLocationPeople

article

Cementitious binders and reclaimed asphalt aggregates for sustainable pavement base layers

  • Bezerra, Augusto Cesar S.
  • Oliveira Costa, Juliana
  • Borges, Paulo H. R.
  • Bergh, Wim Van Den
  • Santos, Flavio A. Dos
  • Blom, Johan
Abstract

Reclaimed asphalt pavement (RAP) has been increasingly used in the past few decades as a replacement of natural aggregates in pavement layers. However, low replacement level is employed, and consequently, large quantities of RAP are still left unused. Researchers often neglect foundation pavement layers, but it has higher prospects to consume recycled materials due to their increased thickness. RAP has inferior prop-erties compared to natural aggregates; therefore, cementitious binders are used to produce a (sub)base layer using high volumes of RAP. This paper reviews the use of RAP aggregates with cementitious materials for pavement foundation layers. Special attention is given to the use of alkali-activated materials (AAM) as a binder in substitution for Portland cement (PC). This review discussed the properties of fresh and hardened RAP in cementitious matrices, as well as changes in the microstructure. The biggest challenge on the use of RAP on both systems, RAP-PC and RAP-AAM, is the bond issues caused by the presence of asphalt on the surface of the aggregates. Some researches addressed how physical or chemical pre-treatments to the RAP could improve the adherence to the paste, but few studies focused on the optimisation of the binder. A literature survey indicated that an optimised mix design, durability studies and life cycle assessment (LCA) are important research needs towards the development of RAP-AAM. Despite the lack of research evidence, RAP-AAM is a promising solution for foundation pavement layers. (C) 2020 Elsevier Ltd. All rights reserved.

Topics
  • impedance spectroscopy
  • microstructure
  • surface
  • cement
  • durability