People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mendis, Priyan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2020Cohesive-strength properties versus porosity of cementitious materialscitations
- 2020Identification of transversely isotropy of calcium silicate hydrate using nanoindentation and finite element analysiscitations
- 2020Cohesive-strength homogenisation model of porous and non-porous materials using linear comparison composites and applicationcitations
- 2020Effect of spiral spacing and concrete strength on behavior of GFRP-reinforced hollow concrete columnscitations
- 2019Study of strain-hardening behaviour of fibre-reinforced alkali-activated fly ash cementcitations
- 2019An investigation of nanomechanical properties of Materials using nanoindentation and Artificial Neural Networkcitations
- 2018Creep properties of cement and alkali activated fly ash materials using nanoindentation techniquecitations
Places of action
Organizations | Location | People |
---|
article
Identification of transversely isotropy of calcium silicate hydrate using nanoindentation and finite element analysis
Abstract
<p>Understanding the mechanical behaviour of Calcium Silicate Hydrate (CSH) is a key to fundamental and engineering advances in improving the performance of cementitious materials. It is well known that CSH exists in two forms that low-density CSH (LD CSH) and high-density CSH (HD CSH). Herein, this paper focuses on transversely isotropic properties of two form of CSH using nanoindentation technique, finite element (FE) analysis, dimensional analysis and artificial neural networks (ANNs) with microporomechanics to investigate its elastic properties, packing density and cohesive strength properties. The finding of this paper demonstrates that nanoindentation technique could reveal the transversely isotropic properties of materials and its elementary solid in elasticity and strength behaviour. The obtained results show that the solid elementary present in CSH possesses an isotropic elasticity behaviour and anisotropic strength behaviour.</p>