Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mccann, F.

  • Google
  • 3
  • 6
  • 102

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2020Structural and acoustical performance of recycled glass bead panels9citations
  • 2019Investigation of acoustical and structural parameters of recycled glass bead composite panelscitations
  • 2016Elevated temperature material properties of stainless steel reinforcing bar93citations

Places of action

Chart of shared publication
Haydar, Aygun
2 / 3 shared
Bu, Y.
1 / 1 shared
Francis, P.
1 / 2 shared
Gardner, L.
1 / 53 shared
Baddoo, Nr
1 / 6 shared
Cashell, Ka
1 / 23 shared
Chart of publication period
2020
2019
2016

Co-Authors (by relevance)

  • Haydar, Aygun
  • Bu, Y.
  • Francis, P.
  • Gardner, L.
  • Baddoo, Nr
  • Cashell, Ka
OrganizationsLocationPeople

article

Structural and acoustical performance of recycled glass bead panels

  • Haydar, Aygun
  • Mccann, F.
Abstract

An investigation is conducted to determine the structural and acoustical properties of panels comprising a core of recycled glass beads bound in a matrix of polyurethane resin enveloped by two fibreglass facing sheets. This investigation is conducted in order assess the suitability of recycled glass bead panels in multifunctional applications in the builtenvironment, especially in urban, built-up or noisy environments where both structural resistance and acoustic insulation are beneficial. In order to assess the acoustical14 performance of the panels, experiments to determine the transmission loss and absorption coefficients are performed using the transfer function method. It is shown that the panels provide effective insulation for typical urban built environments. Experiments are also described that are conducted to determine the modulus of elasticity of the fibreglass sheets, the compressive strength of the bead cores and the behaviour of the recycled glass bead panels when loaded in bending. A design method to predict the ultimate moment resistance of a panel in bending is proposed, which is shown to provide conservative and safe-sided predictions when compared to the experimental results. It is shown that, when employed in a flooring system, recycled glass bead panels can achieve usable spans under typical floor loads expected in commercial and residential structural applications, while also possessing the acoustic insulation performance required of a modern and comfortable dwelling or workspace. This combination of structural and acoustic performance hasconsiderable potential to increase material efficiency in construction.

Topics
  • impedance spectroscopy
  • experiment
  • glass
  • glass
  • strength
  • elasticity
  • resin