People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Oskouei, Asghar Vatani
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Experimental study on seismic performance of squat RC shear walls reinforced with hybrid steel and GFRP rebarscitations
- 2020The effect of elevated temperatures on the compressive section capacity of pultruded GFRP profilescitations
- 2019Effect of fibers configuration and thickness on tensile behavior of GFRP laminates subjected to elevated temperaturescitations
- 2018Effect of Sequential Exposure to UV Radiation and Water Vapor Condensation and Extreme Temperatures on the Mechanical Properties of GFRP Barscitations
- 2018Effect of applied stress and bar characteristics on the short-term creep behavior of FRP barscitations
- 2018Effect of the FRP sheet's arrays and NSM FRP bars on in-plane behavior of URM wallscitations
- 2018Flexural and web crippling properties of GFRP pultruded profiles subjected to wetting and drying cycles in different sea water conditionscitations
- 2017Experimental study of the punching behavior of GFRP reinforced lightweight concrete footingcitations
- 2017Enhancement of bond characteristics of ribbed-surface GFRP bars with concrete by using carbon fiber mat anchoragecitations
- 2016Effect of harsh environments on mechanical properties of GFRP pultruded profilescitations
Places of action
Organizations | Location | People |
---|
article
The effect of elevated temperatures on the compressive section capacity of pultruded GFRP profiles
Abstract
<p>The compressive performance of glass fiber reinforced polymer (GFRP) profiles subjected to elevated temperature was investigated through a large number of (3 0 0) tests. The effects of profile cross-sectional area, slenderness, and temperature on the behavior of the GFRP profiles at temperatures ranging from 25 to 400 °C were determined. It was observed that the compressive strength of the GFRP profiles has been decreased by half as the temperature exceeded 90 °C, i.e., close to the glass transition temperature of the matrix. The temperature and ratio of cross-sectional area to external perimeter were determined as two major parameters affecting section capacity.</p>