Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sasanipour, Hossein

  • Google
  • 7
  • 4
  • 546

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2022Deicer Salt-Scaling Resistance of Concrete Using Recycled Concrete Aggregates Pretreated by Silica Fume Slurry4citations
  • 2021Chloride ion permeability improvement of recycled aggregate concrete using pretreated recycled aggregates by silica fume slurry77citations
  • 2020Durability properties evaluation of self-compacting concrete prepared with waste fine and coarse recycled concrete aggregates141citations
  • 2020Durability assessment of concrete containing surface pretreated coarse recycled concrete aggregates45citations
  • 2019The Effect of Fine and Coarse Recycled Aggregates on Fresh and Mechanical Properties of Self-Compacting Concrete91citations
  • 2019Effect of specimen shape, silica fume, and curing age on durability properties of self-compacting concrete incorporating coarse recycled concrete aggregates49citations
  • 2019Effect of silica fume on durability of self-compacting concrete made with waste recycled concrete aggregates139citations

Places of action

Chart of shared publication
Aslani, Farhad
7 / 71 shared
Taherinezhad, Javad
2 / 2 shared
Nili, Mahmoud
1 / 3 shared
Taherinezhad, J.
1 / 1 shared
Chart of publication period
2022
2021
2020
2019

Co-Authors (by relevance)

  • Aslani, Farhad
  • Taherinezhad, Javad
  • Nili, Mahmoud
  • Taherinezhad, J.
OrganizationsLocationPeople

article

Effect of specimen shape, silica fume, and curing age on durability properties of self-compacting concrete incorporating coarse recycled concrete aggregates

  • Sasanipour, Hossein
  • Aslani, Farhad
Abstract

<p>The usage of recycled concrete aggregates (RCAs) can be effected as a replacement of natural aggregates in the assurance of the environment. Utilizing these products of construction and demolition wastes in self-compacting concrete (SCC) has positive advantages such as reducing the extravagant consumption of natural supplies and decreasing carbon dioxide emissions. However, using RCAs may be affected on the properties of concrete such as reduction in compressive strength, electrical resistivity (ER), increasing in water absorption (WA) and porosity. In this study, the durability performance of SCCs containing coarse RCAs as a partial or total replacement of natural aggregates, and silica fume (SF) as a partial replacement of cement is investigated. The replacement level of SF was considered 8% by weight of cement. Replacement level of RCAs with natural aggregates is selected at 0, 25%, 50%, 75% and 100%. Fresh properties of SCC were evaluated by measuring slump flow and J-ring tests. Durability performance of hardened concrete was investigated using WA, ER and rapid chloride penetration tests. Cube and cylindrical specimens were used to recognize the effect of shape and size specimen on ER and ultrasonic pulse velocity (UPV). Results showed that replacing RCAs decreased durability performance, but using SF in mixes significantly enhanced the ER and chloride ion penetration resistance of SCC. Results illustrated that cylindrical specimens have more consistent results than cube ones. Likewise, assessing durability performance at 91 days concluded reliable results than that in 28 days.</p>

Topics
  • impedance spectroscopy
  • Carbon
  • resistivity
  • strength
  • cement
  • ultrasonic
  • porosity
  • durability
  • curing