People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lawrence, Robert
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2019Resilient hemp shiv aggregates with engineered hygroscopic properties for the building industrycitations
- 2019Development of novel building composites based on hemp and multi-functional silica matrixcitations
- 2018Cell wall microstructure, pore size distribution and absolute density of hemp shivcitations
- 2018Comparative moisture and heat sorption properties of fibre and shiv derived from hemp and flaxcitations
- 2018The influence of constituents on the properties of the bio-aggregate composite hemp-limecitations
- 2018Modification of Hemp Shiv Properties using Water-repellent Sol-gel Coatingscitations
- 2017Aggregation-induced emission in lamellar solids of colloidal perovskite quantum wellscitations
- 2017Aggregation-induced emission in lamellar solids of colloidal perovskite quantum wellscitations
- 2017Physical characterisation of hemp shiv: Cell wall structure and porosity
- 2013The potential for using geopolymer concrete in the UKcitations
- 2009The compressive strength of modern earth masonry
Places of action
Organizations | Location | People |
---|
article
Resilient hemp shiv aggregates with engineered hygroscopic properties for the building industry
Abstract
This study focuses on the surface treatment of an extremely hydrophilic natural plant material, hemp shiv, using a functionalised silica based coating to provide hydrophobicity while retaining its moisture buffering ability. The chemical composition and physical structure of bio-based materials results in their extremely hydrophilic behaviour. In this work, a simple one step coating process was used to enhance the water-repellence of hemp shiv without compromising its ability to adsorb and release moisture. The coating modified the morphology and surface roughness of hemp shiv providing a hydrophobic surface having a water contact angle of 118° and reduced the bulk water absorption by 250% over 24 h. Mercury intrusion porosimetry (MIP) showed that the treatment refined the pore size distribution of hemp shiv, reducing the size of larger pores but not completely blocking the smaller pores thereby allowing hemp shiv to buffer moisture. Fourier-transform infrared spectroscopy (FTIR) revealed the chemical composition was modified by the coating, reducing the hydroxyl groups. Hemp shiv aggregates treated with functionalised silica based coating show potential for the development of robust lightweight building materials with enhanced hydrophobicity.