People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sadeghi Pouya, Homayoon
Coventry University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2021Performance assessment of cathodically protected reinforced concrete structure based on alternative performance criterion: a case studycitations
- 2020Potential and current distribution across different layers of reinforcement in reinforced concrete cathodic protection system- A numerical studycitations
- 2019Predicting the Corrosion Rate of Steel in Cathodically Protected Concrete Using Potential Shiftcitations
- 2019Performance assessment of specialist conductive paint for cathodic protection of steel in reinforced concrete structurescitations
- 2018A Review of Corrosion and Protection of Steel in Concretecitations
- 2015Using waste materials and by-products to produce concrete paving blockscitations
- 2015Zinc-Rich Paint As Anode for Cathodic Protection of Steel in Concretecitations
- 2014Reducing Cement Contents of Paving Blocks by Using Mineral Waste and by-Product Materialscitations
- 2014Using ground granulated blast-furnace slag and mineral wastes to reduce cement in paving blockcitations
- 2013Corrosion durability of high performance steel fibre reinforced concrete
- 2012Strength performance of fly ash and slag mixtures using gypsumcitations
- 2009Strength optimization of novel binder containing plasterboard gypsum waste
- 2009The effect of Persian Gulf tidal zone exposure on durability of mixes containing silica fume and blast furnace slagcitations
- 2007Use of recycled gypsum in road foundation construction
- 2007Development of novel cementitious binders using plasterboard waste and pozzolanic materials for road bases
Places of action
Organizations | Location | People |
---|
article
Predicting the Corrosion Rate of Steel in Cathodically Protected Concrete Using Potential Shift
Abstract
The commonly accepted Cathodic Protection (CP) criterion i.e. 100mV decay evolves from experimental investigations and may not always be accurate. Alternatively, corrosion rate monitoring can assess the adequacy of CP. This work examines the possibility of predicting the corrosion rate of steel in concrete using polarization data induced by known applied current density using Butler Volmer equation. For this, the value of cathodic Tafel slope (βc) plays an important role; decreasing βc from 210 to 60mV, decreases the corrosion rate by 92% at 20mA/m2 current density.<br/>The adequacy of the proposed method is evaluated by applying Impressed Current Cathodic Protection (ICCP) to concrete specimens which have a zinc rich paint (ZRP) as an external anode for a short duration of time. Results showed that to achieve at least 100mV of depolarization, the applied current density should be at least 7 times the corrosion rate for the ZRP anode. However, this holds true, considering the short duration of the tests. Prediction of the corrosion rate of steel from potential shift forms the basis for the improved CP performance criterion for reinforced concrete structures. <br/>