Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Laukkanen, Olli-Ville

  • Google
  • 6
  • 6
  • 248

VTT Technical Research Centre of Finland

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2018Low-temperature rheological and morphological characterization of SBS modified bitumen89citations
  • 2018An empirical constitutive model for complex glass-forming liquids using bitumen as a model material21citations
  • 2018Rheology of complex glass-forming liquids ; Monimutkaisten lasittuvien nesteiden reologia47citations
  • 2018The dynamic fragility and apparent activation energy of bitumens as expressed by a modified Kaelble equation8citations
  • 2017Aging of bituminous binders in asphalt pavements and laboratory tests3citations
  • 2016Oxidation of bitumen80citations

Places of action

Chart of shared publication
Soenen, Hilde
3 / 14 shared
Seppälä, Jukka
2 / 42 shared
Winter, H. Henning
3 / 3 shared
Soenen, H.
1 / 2 shared
Lu, X.
1 / 31 shared
Lu, Xiaohu
1 / 5 shared
Chart of publication period
2018
2017
2016

Co-Authors (by relevance)

  • Soenen, Hilde
  • Seppälä, Jukka
  • Winter, H. Henning
  • Soenen, H.
  • Lu, X.
  • Lu, Xiaohu
OrganizationsLocationPeople

article

Low-temperature rheological and morphological characterization of SBS modified bitumen

  • Soenen, Hilde
  • Seppälä, Jukka
  • Laukkanen, Olli-Ville
  • Winter, H. Henning
Abstract

Polymer modification is widely used to improve the engineering properties of bitumen, the most commonly used polymer modifier being styrene-butadiene-styrene (SBS) block copolymer. Although extensive studies have been performed on polymer modified bitumen (PMB), no reliable data is currently available on the effect of polymer modification on the dynamic rheological properties at low temperatures. In this study, we focus on the rheology of SBS modified bitumen near and below the glass transition temperature (Tg) using the 4-mm DSR technique. In addition, fluorescence microscopy and temperature-modulated differential scanning calorimetry are used to study the phase behavior and interactions in the SBS-bitumen blends. At high SBS concentrations, thermorheological complexity is observed in the investigated temperature range, attributable to the formation of a continuous SBS-rich network structure. In the case of compatible SBS-bitumen blends, a linear correlation is established between the flexural creep stiffness measured by bending beam rheometry (BBR) and the complex shear modulus measured by 4-mm DSR. Deviations from this linear trend are shown to result from the macro-phase separation induced by the poor compatibility of SBS and bitumen. ; Peer reviewed

Topics
  • impedance spectroscopy
  • phase
  • glass
  • glass
  • thermogravimetry
  • glass transition temperature
  • differential scanning calorimetry
  • copolymer
  • block copolymer
  • creep
  • fluorescence microscopy
  • rheometry