People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Brouwers, Jos
Eindhoven University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Sustainable ambient pressure-dried silica aerogel from waste glasscitations
- 2024Improving the early reactivity of activated basic oxygen furnace slagcitations
- 2022Thermal and fire resistance of Class F fly ash based geopolymers – a reviewcitations
- 2021One-pot synthesis of monolithic silica-cellulose aerogel applying a sustainable sodium silicate precursorcitations
- 2020Effects of hydrophobic expanded silicate aggregates on properties of structural lightweight aggregate concretecitations
- 2019Characterization and performance of high volume recycled waste glass and ground granulated blast furnace slag or fly ash blended mortarscitations
- 2019Ionic interaction and liquid absorption by wood in lignocellulose inorganic mineral binder compositescitations
- 2018Effect of pore structure on the performance of photocatalytic lightweight lime-based finishing mortarcitations
- 2018Upgrading and evaluation of waste paper sludge ash in eco-lightweight cement compositescitations
- 2018On the effect of the physical structure of cement on shrinkage of cementitious materialscitations
- 2017Quantification of concrete aggregate liberation through abrasion comminution
- 2017Assessing the effect of CaSO4 content on the hydration kinetics, microstructure and mechanical properties of cements containing sugarscitations
- 2016Design and performance evaluation of ultra-lightweight geopolymer concretecitations
- 2015The effect of glucose on the hydration kinetics of ordinary portland cement
- 2014Synthesis, characterization and photocatalytic activity of WO3/TiO2 for NO removal under UV and visible light irradiationcitations
- 2014Precipitation synthesis of WO3 for NOx removal using PEG as templatecitations
- 2014Wood-wool cement board : potential and challenges
- 2013Photocatalytic removal of nitric oxide by Bi2Mo3O12 prepared by co-precipitation methodcitations
Places of action
Organizations | Location | People |
---|
article
Effect of pore structure on the performance of photocatalytic lightweight lime-based finishing mortar
Abstract
<p>The present paper aims to evaluate the performance of photocatalytic lightweight indoor hydraulic lime-based finishing mortars, with Portland cement-based finishing mortar as a reference. Two different types of aggregates, expanded glass and expanded silicate, are utilized to achieve the lightweight character and their contributions are investigated. The pore structure of the developed mortars is determined by mercury intrusion porosimetry (MIP) and BET methods. The mechanical strength, drying shrinkage, thermal physical properties and air pollutant removal ability of the mortars are investigated and the effects of pore structure on these properties are evaluated. Due to the higher porosity, lime-based finishing mortars possess a higher capillary water absorption and higher drying shrinkage, which can be explained by the Kelvin-Laplace mechanism. The lime-based mortar shows very good thermal properties, with a thermal conductivity of 0.15 W/(m·K). The lime-based mortar shows a better ability of removing air pollutants, up to 46% under indoor air conditions laboratory test, compared to the cement-based mortar, which is attributed to the lower content of gel pores present in the lime-based mortar. Expanded glass shows positive influences concerning thermal properties and air pollutant removal ability compared to expanded silicate.</p>