People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Unluer, Cise
University of Glasgow
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2023Strain hardening magnesium-silicate-hydrate composites with extremely low fiber dosage of 0.5% by volumecitations
- 2023MgO‐based cements – Current status and opportunitiescitations
- 2022Potential additives for magnesia-based concrete with enhanced performance and propensity for CO2 sequestrationcitations
- 2022New frontiers in sustainable cementscitations
- 2022Potential additives for magnesia-based concrete with enhanced performance and propensity for CO 2 sequestrationcitations
- 2021Improving the carbonation resistance of Na2CO3-activated slag mixes via the use of reactive MgO and nucleation seedingcitations
- 2021Mechanical and microstructural changes in reactive magnesium oxide cement-based concrete mixes subjected to high temperaturescitations
- 2021Thermal and mechanical performance of a novel 3D printed macro-encapsulation method for phase change materialscitations
- 2020Performance of reactive magnesia cement formulations containing fly ash and ground granulated blast-furnace slagcitations
- 2020Mechanical properties and flexural behavior of sustainable bamboo fiber-reinforced mortarcitations
- 2018Improving the Carbonation of Reactive MgO Cement Concrete via the Use of NaHCO3 and NaClcitations
- 2018Improving the Carbonation of Reactive MgO Cement Concrete via the Use of NaHCO 3 and NaClcitations
- 2018Development of MgO concrete with enhanced hydration and carbonation mechanismscitations
- 2017Performance and microstructural development of MgO-SiO 2 binders under different curing conditionscitations
- 2017Influence of nucleation seeding on the performance of carbonated MgO formulationscitations
- 2017Performance and microstructural development of MgO-SiO2 binders under different curing conditionscitations
Places of action
Organizations | Location | People |
---|
article
Performance and microstructural development of MgO-SiO2 binders under different curing conditions
Abstract
This study investigated the strength and microstructural development of reactive MgO–SiO2 binder systems under different curing conditions. Rapid strength development associated with accelerated dissolution and hydration involving magnesium silicate hydrate (M-S-H) formation was observed at early ages under elevated temperatures (60°C). Although samples cured under ambient temperatures demonstrated a slow rate of M-S-H formation at early ages, their hydration proceeded over time. Samples cured under sealed conditions achieved 28-day strengths >50MPa because of higher M-S-H contents, higher polymerization and denser microstructures. The content, structure and stability of M-S-H under different conditions determined the overall strength development of MgO–SiO2 binders.