People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ashrafi, Hamed
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2020Tensile properties of GFRP laminates after exposure to elevated temperaturescitations
- 2019Effect of fibers configuration and thickness on tensile behavior of GFRP laminates subjected to elevated temperaturescitations
- 2019Effect of thermal cycles on mechanical response of pultruded glass fiber reinforced polymer profiles of different geometriescitations
- 2019Effect of fibers configuration and thickness on tensile behavior of GFRP laminates exposed to harsh environmentcitations
- 2018Effect of Sequential Exposure to UV Radiation and Water Vapor Condensation and Extreme Temperatures on the Mechanical Properties of GFRP Barscitations
- 2018Effect of applied stress and bar characteristics on the short-term creep behavior of FRP barscitations
- 2018Flexural and web crippling properties of GFRP pultruded profiles subjected to wetting and drying cycles in different sea water conditionscitations
- 2017Enhancement of bond characteristics of ribbed-surface GFRP bars with concrete by using carbon fiber mat anchoragecitations
- 2016Effect of harsh environments on mechanical properties of GFRP pultruded profilescitations
Places of action
Organizations | Location | People |
---|
article
Enhancement of bond characteristics of ribbed-surface GFRP bars with concrete by using carbon fiber mat anchorage
Abstract
<p>The bond of fiber-reinforced polymer (FRP) reinforcement is expected to be more sensitive to the strength and geometry of the ribs than conventional steel reinforcement. In this study, the effect of carbon fiber mat anchorage on the pullout behavior of glass fiber-reinforced polymer (GFRP) bars embedded in normal concrete is studied. The studied parameters were the compressive strength of the concrete (16 MPa, 24 MPa, and 37 MPa), and, the length and diameter of the anchorage. In total, 15 variables were studied. Ribbed GFRP bars with 10 mm nominal diameter and 80 mm embedment length, l<sub>d</sub>, (which is 8 times the bar diameter) were considered. Based on the results for concretes with the compressive strengths of 24 MPa, and 37 MPa, the anchorage systems improved the developed tensile stress of GFRP bars by as much as 7–21% compared to un-anchored bars. As shown in the results, by decreasing concrete strength, the efficiency of the carbon fiber mat anchorage on the bond behavior of the GFRP bar was reduced. Finally, an empirical expression was proposed to predict the ultimate tensile stress and the slip at ultimate tensile stress with either an anchored or un-anchored GFRP bar.</p>