People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Schutter, Geert De
Ghent University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2024Acoustic signatures of hydration and microcracking in early-age concretecitations
- 2023Assessment of pore structure characteristics and tortuosity of 3D printed concrete using mercury intrusion porosimetry and X-ray tomographycitations
- 2023Future perspectives for alkali-activated materials: from existing standards to structural applicationscitations
- 2023Recent progress and technical challenges in using calcium sulfoaluminate (CSA) cementcitations
- 2023Evaluation of copper slag and stainless steel slag as replacements for blast furnace slag in binary and ternary alkali-activated cementscitations
- 2023Geometric Conformability of 3D Concrete Printing Mixtures from a Rheological Perspectivecitations
- 2023Characterisation of alkali-activated stainless steel slag and blast-furnace slag cementscitations
- 2023Magneto-rheology control of cement paste containing Fe3O4 nanoparticles in view of reducing or preventing formwork leakagecitations
- 2023Active rheology control of cementitious materials with responsive mineral particles
- 2023Application of active rheology control to 3D printing of cementitious materialscitations
- 2023The sensitivity of Acoustic Emission (AE) for monitoring the effect of SAPs in fresh concrete
- 2022Shrinkage and settlement assessment of fresh concrete using Digital Image Correlation (DIC) and Acoustic Emission (AE)
- 2022Properties and testing of printed cement-based materials in hardened statecitations
- 2022Printable Cement-Based Materials: Fresh Properties Measurements and Controlcitations
- 2022Stiffening controllable concrete modified with redispersible polymer powder for twin-pipe printingcitations
- 2022Transport properties of 3D printed cementitious materials with prolonged time gap between successive layerscitations
- 2022Adhesive properties of fresh cementitious materials as measured by the tack test
- 2022Using limestone powder as a carrier for the accelerator in extrusion-based 3D concrete printingcitations
- 2021Possibilities of fly ash as responsive additive in magneto-rheology control of cementitious materialscitations
- 2021Quantitative assessment of the influence of external magnetic field on clustering of nano-Fe3O4 particles in cementitious pastecitations
- 2021Active stiffening control by magnetically induced blocking in confined flow of fly ash pastescitations
- 2020Structural Build-Up of Cementitious Paste Under External Magnetic Fieldscitations
- 2019Microstructural characterization of 3D printed cementitious materialscitations
- 2019Stiffening control of printable cement paste with flash setting admixture
- 2019Full-Field Settlement Measurement at Fresh Cementitious Material by Digital Image Correlation
- 2019Influence of nano-clay on rheology, fresh properties of hydration and strength of cement-based mortarscitations
- 2018Proceedings of the Symposium on Concrete Modelling
- 2016Chloride interaction with concretes subjected to a permanent splitting tensile stress level of 65%citations
- 2008X-ray computed microtomography on cementitious materials
Places of action
Organizations | Location | People |
---|
article
Chloride interaction with concretes subjected to a permanent splitting tensile stress level of 65%
Abstract
Penetration of chloride ions into concrete is a complex topic. These ions together with other dissolved chemical species can penetrate into cementitious materials by convection through capillary pores or cracks. Prolonged periods of drying followed by re-wetting can provoke a similar transport mechanism. Saturated cement based materials experience diffusion of water dissolved ions. Ions in the diffusing solution experience chemical interaction with a hydrated cement paste. Some ions are physically adsorbed, others react chemically and part remain free in the solution. This turns the transport into a reactive form of diffusion. The nano-pores which are part of the cement gel, act as sinks for the intruding aggressive chlorides. When concrete is subjected to splitting tensile stresses and a critical stress ratio is surpassed the presence of micro-cracks modifies the transport of chlorides within this material. It was noticed that the chloride content of concrete decreased in zones close to the surface specially where the main pattern of micro-cracks follows the loading plane. It was also observed a secondary micro-crack system which develops perpendicularly to the main splitting-crack system and is connected to it. It was found that this secondary system was also responsible of lowering the level of the chloride content in regions close to the surface even at unexpected distances located far away from the direct influence of the splitting plane. The presence of an inner peak of chloride was also observed, which represents the extent of the damaged or altered zone. This region will be called in this paper as the convection zone. It is believed that the form of the obtained chloride profiles are influenced by the type and amount of binder utilized. Thus, some similarities were found in all the studied concretes such as the formation of a convection zone. On the other hand the level of chloride content and the shape of the profile seem to vary depending on BFS replacement of OPC or when high sulfate resistant cement (HSR) is used as a single binder.