People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kinuthia, John
University of South Wales
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2023Derivation and Internal Validation of a Risk Score for Predicting Chlamydia trachomatis Infection in Kenyan Women Planning Conception
- 2023Physico-Mechanical Evaluation of Geopolymer Concrete Activated by Sodium Hydroxide and Silica Fume-Synthesised Sodium Silicate Solutioncitations
- 2022Opportunities and Challenges to Emergency Department-Based HIV Testing Services and Self-Testing Programs: A Qualitative Study of Healthcare Providers and Patients in Kenyacitations
- 2022The cost of implementing the Systems Analysis and Improvement Approach for a cluster randomized trial integrating HIV testing into family planning services in Mombasa County, Kenyacitations
- 2022Effects of Lysinibacillus sphaericus on Physicomechanical and Chemical Performance of OPC Blended with Natural Tuff and Pulverized Fly Ash
- 2021Influences on Early Discontinuation and Persistence of Daily Oral PrEP Use Among Kenyan Adolescent Girls and Young Women: A Qualitative Evaluation From a PrEP Implementation Programcitations
- 2016Strength and environmental evaluation of stabilised Clay-PFA eco-friendly brickscitations
- 2016Unfired clay materials and constructioncitations
- 2016Engineering Properties of Concrete made with Brick Dust Waste
- 2015Heating and Cooling Scenario of Blended Concrete Subjected to 780 Degrees Celsius
- 2015Development of stabilised brick and mortar using biomass wastecitations
- 2015The Use of Palm Kernel Shell and Ash for Concrete Production
- 2012Stabilised unfired clay bricks for environmental and sustainable usecitations
- 2012Designed non-fired clay mixes for sustainable and low carbon usecitations
- 2010Freeze-thaw of stabilised clay brickcitations
- 2010Unfired clay masonry bricks incorporating slate wastecitations
- 2010Design thermal values for unfired clay brickscitations
- 2010Engineering properties of concrete made with slate wastecitations
- 2010Sustainable masonry mortar for brick joint and plaster in the UKcitations
- 2009Engineering properties of unfired clay masonry brickscitations
- 2009Compressive strength and microstructural analysis of unfired clay masonry brickscitations
- 2009Unfired clay bricks: from laboratory to industrial productioncitations
- 2008Using Slag for Unfired-Clay Masonry-Brickscitations
- 2008Innovative Building Materials: Manufactured Bricks Using By-products of an Industrial Process
- 2008Developing unfired stabilised building materials in the UKcitations
Places of action
Organizations | Location | People |
---|
article
Strength and environmental evaluation of stabilised Clay-PFA eco-friendly bricks
Abstract
<p>The most efficient way for the construction industry to approach sustainability is to reuse waste materials and by-products from other industrial activities. In this research Lower Oxford Clay (LOC) was combined with Pulverised Fly Ash (PFA) as target materials were stabilised with Lime, Portland Cement (PC) and blended binders comprising of Lime and PC blended with Ground Granulated Blast-furnace Slag (GGBS). There are technological, economic as well as environmental advantages and potential of utilising PFA, an industrial by-product from the coal industry, and GGBS a by-product from the steel industry, in the development of eco-friendly Clay-PFA building bricks. The need for sustainability, reduction of material processing costs such as reduction of firing costs is well established within the construction industry. The recycling of GGBS, or PFA as admixtures nowadays is much more than an alternative for reducing costs. In view of the huge demand for building bricks, along with non-availability of suitable soil, there is a need to explore alternative raw materials and energy efficient technologies for making bricks, whose final pricing is relatively low. Results based on the pilot industrial commercial trials from this research illustrated that all the key parameters of compressive strength, and environmental properties were within the acceptable engineering standards for masonry units. From the environmental and sustainability analysis results, the unfired LOC-PFA brick has shown energy-efficiency and suggests a remarkable economical alternative to firing building materials. With new technologies, invention and enhanced waste management, the use of eco-friendly building materials will be a great contribution to the concept of green building.</p>